Entropy measurement and online quality control of bit streams by a true random bit generator Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fcomp.2025.1642566
Generating random bit streams is required in various applications, most notably in cyber-security, which is essential for Internet of Everything applications to enable secure communication between interconnected devices. Ensuring high-quality and robust randomness is crucial to mitigate risks associated with predictability and system compromise. True random numbers provide the highest levels of unpredictability. However, known systematic biases that can emerge from physical imperfections, environmental variations, and device aging in the processes exploited for random number generation must be carefully monitored. This article reports the implementation and characterization of an online procedure for the detection of anomalies in a true random bit stream. It is based on the NIST adaptive proportion and repetition count tests, complemented by statistical analysis relying on the Monobit and RUNS tests. The procedure is implemented in firmware through dedicated hardware accelerators processing configurable-length sequences, with automated anomaly detection triggering alerts after three consecutive threshold violations. The implementation is performed simultaneously with bit stream generation and also provides an estimate of the entropy of the source. A statistical analysis of the results from the NIST procedure to evaluate the symbols of the bit-stream as independently and identically distributed is also performed, leading to a computation of the minimum entropy of the source that cross-checks the previously mentioned estimate. The experimental validation of the approach is performed up the bit streams generated by a quantum, silicon-based entropy source.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fcomp.2025.1642566
- https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdf
- OA Status
- gold
- References
- 27
- OpenAlex ID
- https://openalex.org/W4414880146
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414880146Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fcomp.2025.1642566Digital Object Identifier
- Title
-
Entropy measurement and online quality control of bit streams by a true random bit generatorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-07Full publication date if available
- Authors
-
Cesare Caratozzolo, Valeria Rossi, Kamil Witek, Alberto Trombetta, Mateusz Baszczyk, P. Dorosz, W. Kucewicz, M. CacciaList of authors in order
- Landing page
-
https://doi.org/10.3389/fcomp.2025.1642566Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414880146 |
|---|---|
| doi | https://doi.org/10.3389/fcomp.2025.1642566 |
| ids.doi | https://doi.org/10.3389/fcomp.2025.1642566 |
| ids.openalex | https://openalex.org/W4414880146 |
| fwci | 0.0 |
| type | article |
| title | Entropy measurement and online quality control of bit streams by a true random bit generator |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| topics[1].id | https://openalex.org/T11017 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Chaos-based Image/Signal Encryption |
| topics[2].id | https://openalex.org/T11447 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9733999967575073 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Blind Source Separation Techniques |
| is_xpac | False |
| apc_list.value | 1150 |
| apc_list.currency | USD |
| apc_list.value_usd | 1150 |
| apc_paid.value | 1150 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1150 |
| language | en |
| locations[0].id | doi:10.3389/fcomp.2025.1642566 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210211086 |
| locations[0].source.issn | 2624-9898 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2624-9898 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Computer Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fcomp.2025.1642566 |
| locations[1].id | pmh:oai:doaj.org/article:4999b9e5f8954935819ded480c94078c |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Computer Science, Vol 7 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/4999b9e5f8954935819ded480c94078c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5107549139 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Cesare Caratozzolo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cesare Caratozzolo |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5111339897 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Valeria Rossi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Valeria Rossi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5113461150 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kamil Witek |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kamil Witek |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001327918 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2567-9297 |
| authorships[3].author.display_name | Alberto Trombetta |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Alberto Trombetta |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5104669892 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Mateusz Baszczyk |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mateusz Baszczyk |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5033526212 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8884-0981 |
| authorships[5].author.display_name | P. Dorosz |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Piotr Dorosz |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5108191815 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | W. Kucewicz |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Wojciech Kucewicz |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5046377358 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9499-678X |
| authorships[7].author.display_name | M. Caccia |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Massimo Caccia |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Entropy measurement and online quality control of bit streams by a true random bit generator |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/fcomp.2025.1642566 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210211086 |
| best_oa_location.source.issn | 2624-9898 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2624-9898 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fcomp.2025.1642566 |
| primary_location.id | doi:10.3389/fcomp.2025.1642566 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210211086 |
| primary_location.source.issn | 2624-9898 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2624-9898 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2025.1642566/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Computer Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fcomp.2025.1642566 |
| publication_date | 2025-10-07 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4298403653, https://openalex.org/W3046585101, https://openalex.org/W4402813313, https://openalex.org/W3084195430, https://openalex.org/W4404994086, https://openalex.org/W4400187671, https://openalex.org/W2066460425, https://openalex.org/W4404741193, https://openalex.org/W2013482589, https://openalex.org/W2988683112, https://openalex.org/W1963898916, https://openalex.org/W4409426097, https://openalex.org/W1996214499, https://openalex.org/W4408275935, https://openalex.org/W2048394203, https://openalex.org/W4309765387, https://openalex.org/W4240963859, https://openalex.org/W2741730328, https://openalex.org/W2784781042, https://openalex.org/W4404209146, https://openalex.org/W2077667328, https://openalex.org/W4410980720, https://openalex.org/W6891837231, https://openalex.org/W4243494487, https://openalex.org/W4413988602, https://openalex.org/W4409989571, https://openalex.org/W2793613633 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 169 |
| abstract_inverted_index.a | 97, 196, 225 |
| abstract_inverted_index.It | 102 |
| abstract_inverted_index.an | 88, 161 |
| abstract_inverted_index.as | 186 |
| abstract_inverted_index.be | 77 |
| abstract_inverted_index.by | 115, 224 |
| abstract_inverted_index.in | 6, 11, 68, 96, 129 |
| abstract_inverted_index.is | 4, 14, 33, 103, 127, 151, 191, 217 |
| abstract_inverted_index.of | 18, 51, 87, 94, 163, 166, 172, 183, 198, 202, 214 |
| abstract_inverted_index.on | 105, 119 |
| abstract_inverted_index.to | 21, 35, 179, 195 |
| abstract_inverted_index.up | 219 |
| abstract_inverted_index.The | 125, 149, 211 |
| abstract_inverted_index.and | 30, 41, 65, 85, 110, 122, 158, 188 |
| abstract_inverted_index.bit | 2, 100, 155, 221 |
| abstract_inverted_index.can | 58 |
| abstract_inverted_index.for | 16, 72, 91 |
| abstract_inverted_index.the | 48, 69, 83, 92, 106, 120, 164, 167, 173, 176, 181, 184, 199, 203, 207, 215, 220 |
| abstract_inverted_index.NIST | 107, 177 |
| abstract_inverted_index.RUNS | 123 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.True | 44 |
| abstract_inverted_index.also | 159, 192 |
| abstract_inverted_index.from | 60, 175 |
| abstract_inverted_index.most | 9 |
| abstract_inverted_index.must | 76 |
| abstract_inverted_index.that | 57, 205 |
| abstract_inverted_index.true | 98 |
| abstract_inverted_index.with | 39, 138, 154 |
| abstract_inverted_index.after | 144 |
| abstract_inverted_index.aging | 67 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.count | 112 |
| abstract_inverted_index.known | 54 |
| abstract_inverted_index.risks | 37 |
| abstract_inverted_index.three | 145 |
| abstract_inverted_index.which | 13 |
| abstract_inverted_index.alerts | 143 |
| abstract_inverted_index.biases | 56 |
| abstract_inverted_index.device | 66 |
| abstract_inverted_index.emerge | 59 |
| abstract_inverted_index.enable | 22 |
| abstract_inverted_index.levels | 50 |
| abstract_inverted_index.number | 74 |
| abstract_inverted_index.online | 89 |
| abstract_inverted_index.random | 1, 45, 73, 99 |
| abstract_inverted_index.robust | 31 |
| abstract_inverted_index.secure | 23 |
| abstract_inverted_index.source | 204 |
| abstract_inverted_index.stream | 156 |
| abstract_inverted_index.system | 42 |
| abstract_inverted_index.tests, | 113 |
| abstract_inverted_index.tests. | 124 |
| abstract_inverted_index.Monobit | 121 |
| abstract_inverted_index.anomaly | 140 |
| abstract_inverted_index.article | 81 |
| abstract_inverted_index.between | 25 |
| abstract_inverted_index.crucial | 34 |
| abstract_inverted_index.entropy | 165, 201, 228 |
| abstract_inverted_index.highest | 49 |
| abstract_inverted_index.leading | 194 |
| abstract_inverted_index.minimum | 200 |
| abstract_inverted_index.notably | 10 |
| abstract_inverted_index.numbers | 46 |
| abstract_inverted_index.provide | 47 |
| abstract_inverted_index.relying | 118 |
| abstract_inverted_index.reports | 82 |
| abstract_inverted_index.results | 174 |
| abstract_inverted_index.source. | 168, 229 |
| abstract_inverted_index.stream. | 101 |
| abstract_inverted_index.streams | 3, 222 |
| abstract_inverted_index.symbols | 182 |
| abstract_inverted_index.through | 131 |
| abstract_inverted_index.various | 7 |
| abstract_inverted_index.Ensuring | 28 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.Internet | 17 |
| abstract_inverted_index.adaptive | 108 |
| abstract_inverted_index.analysis | 117, 171 |
| abstract_inverted_index.approach | 216 |
| abstract_inverted_index.devices. | 27 |
| abstract_inverted_index.estimate | 162 |
| abstract_inverted_index.evaluate | 180 |
| abstract_inverted_index.firmware | 130 |
| abstract_inverted_index.hardware | 133 |
| abstract_inverted_index.mitigate | 36 |
| abstract_inverted_index.physical | 61 |
| abstract_inverted_index.provides | 160 |
| abstract_inverted_index.quantum, | 226 |
| abstract_inverted_index.required | 5 |
| abstract_inverted_index.anomalies | 95 |
| abstract_inverted_index.automated | 139 |
| abstract_inverted_index.carefully | 78 |
| abstract_inverted_index.dedicated | 132 |
| abstract_inverted_index.detection | 93, 141 |
| abstract_inverted_index.essential | 15 |
| abstract_inverted_index.estimate. | 210 |
| abstract_inverted_index.exploited | 71 |
| abstract_inverted_index.generated | 223 |
| abstract_inverted_index.mentioned | 209 |
| abstract_inverted_index.performed | 152, 218 |
| abstract_inverted_index.procedure | 90, 126, 178 |
| abstract_inverted_index.processes | 70 |
| abstract_inverted_index.threshold | 147 |
| abstract_inverted_index.Everything | 19 |
| abstract_inverted_index.Generating | 0 |
| abstract_inverted_index.associated | 38 |
| abstract_inverted_index.bit-stream | 185 |
| abstract_inverted_index.generation | 75, 157 |
| abstract_inverted_index.monitored. | 79 |
| abstract_inverted_index.performed, | 193 |
| abstract_inverted_index.previously | 208 |
| abstract_inverted_index.processing | 135 |
| abstract_inverted_index.proportion | 109 |
| abstract_inverted_index.randomness | 32 |
| abstract_inverted_index.repetition | 111 |
| abstract_inverted_index.sequences, | 137 |
| abstract_inverted_index.systematic | 55 |
| abstract_inverted_index.triggering | 142 |
| abstract_inverted_index.validation | 213 |
| abstract_inverted_index.compromise. | 43 |
| abstract_inverted_index.computation | 197 |
| abstract_inverted_index.consecutive | 146 |
| abstract_inverted_index.distributed | 190 |
| abstract_inverted_index.identically | 189 |
| abstract_inverted_index.implemented | 128 |
| abstract_inverted_index.statistical | 116, 170 |
| abstract_inverted_index.variations, | 64 |
| abstract_inverted_index.violations. | 148 |
| abstract_inverted_index.accelerators | 134 |
| abstract_inverted_index.applications | 20 |
| abstract_inverted_index.complemented | 114 |
| abstract_inverted_index.cross-checks | 206 |
| abstract_inverted_index.experimental | 212 |
| abstract_inverted_index.high-quality | 29 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.communication | 24 |
| abstract_inverted_index.environmental | 63 |
| abstract_inverted_index.independently | 187 |
| abstract_inverted_index.silicon-based | 227 |
| abstract_inverted_index.imperfections, | 62 |
| abstract_inverted_index.implementation | 84, 150 |
| abstract_inverted_index.interconnected | 26 |
| abstract_inverted_index.predictability | 40 |
| abstract_inverted_index.simultaneously | 153 |
| abstract_inverted_index.cyber-security, | 12 |
| abstract_inverted_index.characterization | 86 |
| abstract_inverted_index.unpredictability. | 52 |
| abstract_inverted_index.configurable-length | 136 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.49275556 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |