Environmental Condition Monitoring of Infrastructure Projects Based on Wireless Sensor Networks Article Swipe
Infrastructure monitoring represents a critical challenge for ensuring public safety and operational efficiency in modern urban environments, where traditional wired monitoring systems face significant limitations in terms of cost, scalability, and deployment complexity. To fulfill this demand, this paper introduces a complete wireless sensor network (WSN) framework used for infrastructure project environmental condition monitoring, including multi-parameter sensing, a suite of big data applications, and a high-speed data communication protocol with ultra-low power. The designed system is based on a hierarchical network architecture using environment sensors such as temperature, humidity, air quality in addition to structural sensors such as vibration, strain and displacement sensors. Field deployment on four different infrastructure sites (bridges, buildings, rail and road corridors) exhibited excellent performance with respect to network connectivity success of 98.7% and system uptime of 99.2% over the duration of 1 year while being operated continuously. High fidelity environmental monitoring with temperature measurement accuracy of ±0.3°C and humidity monitoring accuracy of ±2%RH was achieved to capture seasonal and pollution oriented infrastructure impacts. Performance evaluation on the network results showed satisfying average data delivery ratio > 97.5%, average packet end-to-end delay of 1.05 s, and energy efficiency of 8.0 nJ/bit, which confirmed the efficiency of the adaptive communication protocols. In Structural Health Monitoring, excellent temperature-strain relationship was found (R² = 0.85) and vibration monitoring could contribute to the early identification of possible structural problems. A machine learning-based tool with Random Forest regression resulted in strong and reliable prediction accuracy (R² = 0.952, RMSE = 5.63 μstrain) of strain based on environmental factors, for early maintenance planning. Energy management techniques like solar harvesting accounted for 65% of power demands and adaptive algorithms led to a reduction of 34% and surpassed projected battery lifetimes of greater than 3 years. Economic evaluation indicates significant benefits compared to conventional systems: 65% cost reduction, 1 year payback, and 115% 10-year ROI. System fault tolerance analysis verified successful operation with a 20% failure rate of nodes or higher, hence proving that INDEPT is resilient enough for deployment in critical infrastructure environments. The research concludes wireless sensor networks can revolutionize infrastructure monitoring, by providing an efficient, low-cost, and reliable means -ability that greatly enhances condition assessment of the environment for present infrastructure management.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54691/p3zhpn25
- https://fse-journal.org/index.php/ojs/article/download/160/154
- OA Status
- diamond
- References
- 9
- OpenAlex ID
- https://openalex.org/W4414392463
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414392463Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54691/p3zhpn25Digital Object Identifier
- Title
-
Environmental Condition Monitoring of Infrastructure Projects Based on Wireless Sensor NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-22Full publication date if available
- Authors
-
Z. Jane WangList of authors in order
- Landing page
-
https://doi.org/10.54691/p3zhpn25Publisher landing page
- PDF URL
-
https://fse-journal.org/index.php/ojs/article/download/160/154Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://fse-journal.org/index.php/ojs/article/download/160/154Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
9Number of works referenced by this work
Full payload
| id | https://openalex.org/W4414392463 |
|---|---|
| doi | https://doi.org/10.54691/p3zhpn25 |
| ids.doi | https://doi.org/10.54691/p3zhpn25 |
| ids.openalex | https://openalex.org/W4414392463 |
| fwci | 0.0 |
| type | article |
| title | Environmental Condition Monitoring of Infrastructure Projects Based on Wireless Sensor Networks |
| biblio.issue | 9 |
| biblio.volume | 5 |
| biblio.last_page | 160 |
| biblio.first_page | 142 |
| topics[0].id | https://openalex.org/T10080 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.983299970626831 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Energy Efficient Wireless Sensor Networks |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.54691/p3zhpn25 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387280314 |
| locations[0].source.issn | 2710-0588 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2710-0588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in Science and Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://fse-journal.org/index.php/ojs/article/download/160/154 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.54691/p3zhpn25 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051587486 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3791-0249 |
| authorships[0].author.display_name | Z. Jane Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zehan Wang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://fse-journal.org/index.php/ojs/article/download/160/154 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Environmental Condition Monitoring of Infrastructure Projects Based on Wireless Sensor Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10080 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.983299970626831 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Energy Efficient Wireless Sensor Networks |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54691/p3zhpn25 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387280314 |
| best_oa_location.source.issn | 2710-0588 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2710-0588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in Science and Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://fse-journal.org/index.php/ojs/article/download/160/154 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.54691/p3zhpn25 |
| primary_location.id | doi:10.54691/p3zhpn25 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387280314 |
| primary_location.source.issn | 2710-0588 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2710-0588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in Science and Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://fse-journal.org/index.php/ojs/article/download/160/154 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.54691/p3zhpn25 |
| publication_date | 2025-09-22 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4403737723, https://openalex.org/W2958006772, https://openalex.org/W4366827221, https://openalex.org/W2114574164, https://openalex.org/W4388599812, https://openalex.org/W4399417879, https://openalex.org/W4405822609, https://openalex.org/W2801270058, https://openalex.org/W4320037378 |
| referenced_works_count | 9 |
| abstract_inverted_index.1 | 136, 304 |
| abstract_inverted_index.3 | 290 |
| abstract_inverted_index.= | 214, 245, 248 |
| abstract_inverted_index.A | 229 |
| abstract_inverted_index.a | 3, 40, 57, 64, 78, 278, 319 |
| abstract_inverted_index.In | 204 |
| abstract_inverted_index.To | 33 |
| abstract_inverted_index.an | 352 |
| abstract_inverted_index.as | 86, 97 |
| abstract_inverted_index.by | 350 |
| abstract_inverted_index.in | 13, 25, 91, 238, 336 |
| abstract_inverted_index.is | 75, 331 |
| abstract_inverted_index.of | 27, 59, 125, 130, 135, 150, 156, 186, 192, 199, 225, 251, 270, 280, 287, 323, 364 |
| abstract_inverted_index.on | 77, 105, 170, 254 |
| abstract_inverted_index.or | 325 |
| abstract_inverted_index.s, | 188 |
| abstract_inverted_index.to | 93, 121, 160, 221, 277, 298 |
| abstract_inverted_index.20% | 320 |
| abstract_inverted_index.34% | 281 |
| abstract_inverted_index.65% | 269, 301 |
| abstract_inverted_index.8.0 | 193 |
| abstract_inverted_index.The | 72, 340 |
| abstract_inverted_index.air | 89 |
| abstract_inverted_index.and | 10, 30, 63, 100, 113, 127, 152, 163, 189, 216, 240, 273, 282, 307, 355 |
| abstract_inverted_index.big | 60 |
| abstract_inverted_index.can | 346 |
| abstract_inverted_index.for | 6, 48, 257, 268, 334, 367 |
| abstract_inverted_index.led | 276 |
| abstract_inverted_index.the | 133, 171, 197, 200, 222, 365 |
| abstract_inverted_index.was | 158, 211 |
| abstract_inverted_index.> | 180 |
| abstract_inverted_index.(R² | 213, 244 |
| abstract_inverted_index.1.05 | 187 |
| abstract_inverted_index.115% | 308 |
| abstract_inverted_index.5.63 | 249 |
| abstract_inverted_index.High | 142 |
| abstract_inverted_index.RMSE | 247 |
| abstract_inverted_index.ROI. | 310 |
| abstract_inverted_index.cost | 302 |
| abstract_inverted_index.data | 61, 66, 177 |
| abstract_inverted_index.face | 22 |
| abstract_inverted_index.four | 106 |
| abstract_inverted_index.like | 264 |
| abstract_inverted_index.over | 132 |
| abstract_inverted_index.rail | 112 |
| abstract_inverted_index.rate | 322 |
| abstract_inverted_index.road | 114 |
| abstract_inverted_index.such | 85, 96 |
| abstract_inverted_index.than | 289 |
| abstract_inverted_index.that | 329, 359 |
| abstract_inverted_index.this | 35, 37 |
| abstract_inverted_index.tool | 232 |
| abstract_inverted_index.used | 47 |
| abstract_inverted_index.with | 69, 119, 146, 233, 318 |
| abstract_inverted_index.year | 137, 305 |
| abstract_inverted_index.(WSN) | 45 |
| abstract_inverted_index.0.85) | 215 |
| abstract_inverted_index.98.7% | 126 |
| abstract_inverted_index.99.2% | 131 |
| abstract_inverted_index.Field | 103 |
| abstract_inverted_index.based | 76, 253 |
| abstract_inverted_index.being | 139 |
| abstract_inverted_index.cost, | 28 |
| abstract_inverted_index.could | 219 |
| abstract_inverted_index.delay | 185 |
| abstract_inverted_index.early | 223, 258 |
| abstract_inverted_index.fault | 312 |
| abstract_inverted_index.found | 212 |
| abstract_inverted_index.hence | 327 |
| abstract_inverted_index.means | 357 |
| abstract_inverted_index.nodes | 324 |
| abstract_inverted_index.paper | 38 |
| abstract_inverted_index.power | 271 |
| abstract_inverted_index.ratio | 179 |
| abstract_inverted_index.sites | 109 |
| abstract_inverted_index.solar | 265 |
| abstract_inverted_index.suite | 58 |
| abstract_inverted_index.terms | 26 |
| abstract_inverted_index.urban | 15 |
| abstract_inverted_index.using | 82 |
| abstract_inverted_index.where | 17 |
| abstract_inverted_index.which | 195 |
| abstract_inverted_index.while | 138 |
| abstract_inverted_index.wired | 19 |
| abstract_inverted_index.0.952, | 246 |
| abstract_inverted_index.97.5%, | 181 |
| abstract_inverted_index.Energy | 261 |
| abstract_inverted_index.Forest | 235 |
| abstract_inverted_index.Health | 206 |
| abstract_inverted_index.INDEPT | 330 |
| abstract_inverted_index.Random | 234 |
| abstract_inverted_index.System | 311 |
| abstract_inverted_index.energy | 190 |
| abstract_inverted_index.enough | 333 |
| abstract_inverted_index.modern | 14 |
| abstract_inverted_index.packet | 183 |
| abstract_inverted_index.power. | 71 |
| abstract_inverted_index.public | 8 |
| abstract_inverted_index.safety | 9 |
| abstract_inverted_index.sensor | 43, 344 |
| abstract_inverted_index.showed | 174 |
| abstract_inverted_index.strain | 99, 252 |
| abstract_inverted_index.strong | 239 |
| abstract_inverted_index.system | 74, 128 |
| abstract_inverted_index.uptime | 129 |
| abstract_inverted_index.years. | 291 |
| abstract_inverted_index.±2%RH | 157 |
| abstract_inverted_index.10-year | 309 |
| abstract_inverted_index.average | 176, 182 |
| abstract_inverted_index.battery | 285 |
| abstract_inverted_index.capture | 161 |
| abstract_inverted_index.demand, | 36 |
| abstract_inverted_index.demands | 272 |
| abstract_inverted_index.failure | 321 |
| abstract_inverted_index.fulfill | 34 |
| abstract_inverted_index.greater | 288 |
| abstract_inverted_index.greatly | 360 |
| abstract_inverted_index.higher, | 326 |
| abstract_inverted_index.machine | 230 |
| abstract_inverted_index.nJ/bit, | 194 |
| abstract_inverted_index.network | 44, 80, 122, 172 |
| abstract_inverted_index.present | 368 |
| abstract_inverted_index.project | 50 |
| abstract_inverted_index.proving | 328 |
| abstract_inverted_index.quality | 90 |
| abstract_inverted_index.respect | 120 |
| abstract_inverted_index.results | 173 |
| abstract_inverted_index.sensors | 84, 95 |
| abstract_inverted_index.success | 124 |
| abstract_inverted_index.systems | 21 |
| abstract_inverted_index.-ability | 358 |
| abstract_inverted_index.Economic | 292 |
| abstract_inverted_index.accuracy | 149, 155, 243 |
| abstract_inverted_index.achieved | 159 |
| abstract_inverted_index.adaptive | 201, 274 |
| abstract_inverted_index.addition | 92 |
| abstract_inverted_index.analysis | 314 |
| abstract_inverted_index.benefits | 296 |
| abstract_inverted_index.compared | 297 |
| abstract_inverted_index.complete | 41 |
| abstract_inverted_index.critical | 4, 337 |
| abstract_inverted_index.delivery | 178 |
| abstract_inverted_index.designed | 73 |
| abstract_inverted_index.duration | 134 |
| abstract_inverted_index.enhances | 361 |
| abstract_inverted_index.ensuring | 7 |
| abstract_inverted_index.factors, | 256 |
| abstract_inverted_index.fidelity | 143 |
| abstract_inverted_index.humidity | 153 |
| abstract_inverted_index.impacts. | 167 |
| abstract_inverted_index.networks | 345 |
| abstract_inverted_index.operated | 140 |
| abstract_inverted_index.oriented | 165 |
| abstract_inverted_index.payback, | 306 |
| abstract_inverted_index.possible | 226 |
| abstract_inverted_index.protocol | 68 |
| abstract_inverted_index.reliable | 241, 356 |
| abstract_inverted_index.research | 341 |
| abstract_inverted_index.resulted | 237 |
| abstract_inverted_index.seasonal | 162 |
| abstract_inverted_index.sensing, | 56 |
| abstract_inverted_index.sensors. | 102 |
| abstract_inverted_index.systems: | 300 |
| abstract_inverted_index.verified | 315 |
| abstract_inverted_index.wireless | 42, 343 |
| abstract_inverted_index.±0.3°C | 151 |
| abstract_inverted_index.(bridges, | 110 |
| abstract_inverted_index.accounted | 267 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.concludes | 342 |
| abstract_inverted_index.condition | 52, 362 |
| abstract_inverted_index.confirmed | 196 |
| abstract_inverted_index.different | 107 |
| abstract_inverted_index.excellent | 117, 208 |
| abstract_inverted_index.exhibited | 116 |
| abstract_inverted_index.framework | 46 |
| abstract_inverted_index.humidity, | 88 |
| abstract_inverted_index.including | 54 |
| abstract_inverted_index.indicates | 294 |
| abstract_inverted_index.lifetimes | 286 |
| abstract_inverted_index.low-cost, | 354 |
| abstract_inverted_index.operation | 317 |
| abstract_inverted_index.planning. | 260 |
| abstract_inverted_index.pollution | 164 |
| abstract_inverted_index.problems. | 228 |
| abstract_inverted_index.projected | 284 |
| abstract_inverted_index.providing | 351 |
| abstract_inverted_index.reduction | 279 |
| abstract_inverted_index.resilient | 332 |
| abstract_inverted_index.surpassed | 283 |
| abstract_inverted_index.tolerance | 313 |
| abstract_inverted_index.ultra-low | 70 |
| abstract_inverted_index.vibration | 217 |
| abstract_inverted_index.μstrain) | 250 |
| abstract_inverted_index.Structural | 205 |
| abstract_inverted_index.algorithms | 275 |
| abstract_inverted_index.assessment | 363 |
| abstract_inverted_index.buildings, | 111 |
| abstract_inverted_index.contribute | 220 |
| abstract_inverted_index.corridors) | 115 |
| abstract_inverted_index.deployment | 31, 104, 335 |
| abstract_inverted_index.efficiency | 12, 191, 198 |
| abstract_inverted_index.efficient, | 353 |
| abstract_inverted_index.end-to-end | 184 |
| abstract_inverted_index.evaluation | 169, 293 |
| abstract_inverted_index.harvesting | 266 |
| abstract_inverted_index.high-speed | 65 |
| abstract_inverted_index.introduces | 39 |
| abstract_inverted_index.management | 262 |
| abstract_inverted_index.monitoring | 1, 20, 145, 154, 218 |
| abstract_inverted_index.prediction | 242 |
| abstract_inverted_index.protocols. | 203 |
| abstract_inverted_index.reduction, | 303 |
| abstract_inverted_index.regression | 236 |
| abstract_inverted_index.represents | 2 |
| abstract_inverted_index.satisfying | 175 |
| abstract_inverted_index.structural | 94, 227 |
| abstract_inverted_index.successful | 316 |
| abstract_inverted_index.techniques | 263 |
| abstract_inverted_index.vibration, | 98 |
| abstract_inverted_index.Monitoring, | 207 |
| abstract_inverted_index.Performance | 168 |
| abstract_inverted_index.complexity. | 32 |
| abstract_inverted_index.environment | 83, 366 |
| abstract_inverted_index.limitations | 24 |
| abstract_inverted_index.maintenance | 259 |
| abstract_inverted_index.management. | 370 |
| abstract_inverted_index.measurement | 148 |
| abstract_inverted_index.monitoring, | 53, 349 |
| abstract_inverted_index.operational | 11 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.significant | 23, 295 |
| abstract_inverted_index.temperature | 147 |
| abstract_inverted_index.traditional | 18 |
| abstract_inverted_index.architecture | 81 |
| abstract_inverted_index.connectivity | 123 |
| abstract_inverted_index.conventional | 299 |
| abstract_inverted_index.displacement | 101 |
| abstract_inverted_index.hierarchical | 79 |
| abstract_inverted_index.relationship | 210 |
| abstract_inverted_index.scalability, | 29 |
| abstract_inverted_index.temperature, | 87 |
| abstract_inverted_index.applications, | 62 |
| abstract_inverted_index.communication | 67, 202 |
| abstract_inverted_index.continuously. | 141 |
| abstract_inverted_index.environmental | 51, 144, 255 |
| abstract_inverted_index.environments, | 16 |
| abstract_inverted_index.environments. | 339 |
| abstract_inverted_index.revolutionize | 347 |
| abstract_inverted_index.Infrastructure | 0 |
| abstract_inverted_index.identification | 224 |
| abstract_inverted_index.infrastructure | 49, 108, 166, 338, 348, 369 |
| abstract_inverted_index.learning-based | 231 |
| abstract_inverted_index.multi-parameter | 55 |
| abstract_inverted_index.temperature-strain | 209 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5051587486 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.5126052 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |