Environmental‐aware deformation prediction of water‐related concrete structures using deep learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/mice.13513
Accurate long‐term deformation prediction is essential to ensure the structural security and ongoing stability of large water‐related concrete structures like ultra‐high arch dams. Traditional statistical regression and shallow machine learning approaches, due to their algorithmic constraints, often fail to comprehensively capture the complex temporal and spatial dependencies inherent in high‐dimensional prototypical monitoring data, thereby limiting their predictive accuracy and robustness. To address these challenges, this study proposes a multi‐point deformation forecasting model that incorporates both spatial and temporal correlations between environmental factors and deformation, utilizing advanced deep learning (DL) techniques. Specifically, we employ a Transformer‐based convolutional long short‐term memory (ConvLSTM) model to capture the spatiotemporal dependencies across numerous temperature and deformation monitoring sequences. Furthermore, the multi‐objective bayesian optimization algorithm is utilized to ascertain the optimal model architecture and hyperparameters, concurrently maximizing the regression coefficient and minimizing the root mean square error (RMSE). The effectiveness of the proposed DL‐based model for high‐arch dam deformation prediction is validated using data from multiple monitoring points of ultra‐high arch dams. Experimental results demonstrate that the TransformerConvLSTM method significantly outperforms other models at five monitoring points. Quantitatively, it consistently achieves lower RMSE and high correlation coefficient values, indicating its superior ability to provide accurate predictions with minimal error.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/mice.13513
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513
- OA Status
- hybrid
- Cited By
- 7
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410524459
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410524459Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/mice.13513Digital Object Identifier
- Title
-
Environmental‐aware deformation prediction of water‐related concrete structures using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-19Full publication date if available
- Authors
-
Hao Gu, Yangtao Li, Yixiang Fang, Yiming Wang, Yang Yu, Yang Wei, Liqun Xu, Yijun ChenList of authors in order
- Landing page
-
https://doi.org/10.1111/mice.13513Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513Direct OA link when available
- Concepts
-
Deformation (meteorology), Artificial intelligence, Geotechnical engineering, Computer science, Environmental science, Geology, Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410524459 |
|---|---|
| doi | https://doi.org/10.1111/mice.13513 |
| ids.doi | https://doi.org/10.1111/mice.13513 |
| ids.openalex | https://openalex.org/W4410524459 |
| fwci | 16.774145 |
| type | article |
| title | Environmental‐aware deformation prediction of water‐related concrete structures using deep learning |
| awards[0].id | https://openalex.org/G3145595929 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 52379122 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 15 |
| biblio.volume | 40 |
| biblio.last_page | 2151 |
| biblio.first_page | 2130 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T12293 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Dam Engineering and Safety |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9860000014305115 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 4740 |
| apc_list.currency | USD |
| apc_list.value_usd | 4740 |
| apc_paid.value | 4740 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4740 |
| concepts[0].id | https://openalex.org/C204366326 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5934311747550964 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3027650 |
| concepts[0].display_name | Deformation (meteorology) |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4576941132545471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C187320778 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3940463364124298 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[2].display_name | Geotechnical engineering |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.39198312163352966 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.38319647312164307 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C127313418 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2788584232330322 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[5].display_name | Geology |
| concepts[6].id | https://openalex.org/C192562407 |
| concepts[6].level | 0 |
| concepts[6].score | 0.26244866847991943 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[6].display_name | Materials science |
| concepts[7].id | https://openalex.org/C159985019 |
| concepts[7].level | 1 |
| concepts[7].score | 0.18443748354911804 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[7].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/deformation |
| keywords[0].score | 0.5934311747550964 |
| keywords[0].display_name | Deformation (meteorology) |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.4576941132545471 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/geotechnical-engineering |
| keywords[2].score | 0.3940463364124298 |
| keywords[2].display_name | Geotechnical engineering |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.39198312163352966 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.38319647312164307 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/geology |
| keywords[5].score | 0.2788584232330322 |
| keywords[5].display_name | Geology |
| keywords[6].id | https://openalex.org/keywords/materials-science |
| keywords[6].score | 0.26244866847991943 |
| keywords[6].display_name | Materials science |
| keywords[7].id | https://openalex.org/keywords/composite-material |
| keywords[7].score | 0.18443748354911804 |
| keywords[7].display_name | Composite material |
| language | en |
| locations[0].id | doi:10.1111/mice.13513 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S206927758 |
| locations[0].source.issn | 1093-9687, 1467-8667 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1093-9687 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| locations[0].landing_page_url | https://doi.org/10.1111/mice.13513 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056362398 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8661-6655 |
| authorships[0].author.display_name | Hao Gu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[0].institutions[0].id | https://openalex.org/I163340411 |
| authorships[0].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hohai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Gu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[1].author.id | https://openalex.org/A5024328368 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8840-7291 |
| authorships[1].author.display_name | Yangtao Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I167027274 |
| authorships[1].affiliations[0].raw_affiliation_string | Jiangsu Province Key Laboratory of Intelligent Construction and Safe Operation Maintenance of Bridges Nanjing Forestry University Nanjing China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I167027274 |
| authorships[1].affiliations[1].raw_affiliation_string | College of Civil Engineering Nanjing Forestry University Nanjing China |
| authorships[1].institutions[0].id | https://openalex.org/I167027274 |
| authorships[1].institutions[0].ror | https://ror.org/03m96p165 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I167027274 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing Forestry University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yangtao Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Civil Engineering Nanjing Forestry University Nanjing China, Jiangsu Province Key Laboratory of Intelligent Construction and Safe Operation Maintenance of Bridges Nanjing Forestry University Nanjing China |
| authorships[2].author.id | https://openalex.org/A5039223495 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1986-1279 |
| authorships[2].author.display_name | Yixiang Fang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[2].institutions[0].id | https://openalex.org/I163340411 |
| authorships[2].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hohai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yixiang Fang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[3].author.id | https://openalex.org/A5100377920 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7330-2235 |
| authorships[3].author.display_name | Yiming Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[3].institutions[0].id | https://openalex.org/I163340411 |
| authorships[3].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hohai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yiming Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[4].author.id | https://openalex.org/A5101476708 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9592-8191 |
| authorships[4].author.display_name | Yang Yu |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[4].affiliations[0].raw_affiliation_string | Centre for Infrastructure Engineering and Safety School of Civil and Environmental Engineering The University of New South Wales Sydney New South Wales Australia |
| authorships[4].institutions[0].id | https://openalex.org/I31746571 |
| authorships[4].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | UNSW Sydney |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yang Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centre for Infrastructure Engineering and Safety School of Civil and Environmental Engineering The University of New South Wales Sydney New South Wales Australia |
| authorships[5].author.id | https://openalex.org/A5050920558 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2915-3898 |
| authorships[5].author.display_name | Yang Wei |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I167027274 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Civil Engineering Nanjing Forestry University Nanjing China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I167027274 |
| authorships[5].affiliations[1].raw_affiliation_string | Jiangsu Province Key Laboratory of Intelligent Construction and Safe Operation Maintenance of Bridges Nanjing Forestry University Nanjing China |
| authorships[5].institutions[0].id | https://openalex.org/I167027274 |
| authorships[5].institutions[0].ror | https://ror.org/03m96p165 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I167027274 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing Forestry University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yang Wei |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Civil Engineering Nanjing Forestry University Nanjing China, Jiangsu Province Key Laboratory of Intelligent Construction and Safe Operation Maintenance of Bridges Nanjing Forestry University Nanjing China |
| authorships[6].author.id | https://openalex.org/A5058779671 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8451-548X |
| authorships[6].author.display_name | Liqun Xu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I163340411 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[6].institutions[0].id | https://openalex.org/I163340411 |
| authorships[6].institutions[0].ror | https://ror.org/01wd4xt90 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I163340411 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Hohai University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Liqun Xu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Water Conservancy and Hydropower Engineering Hohai University Nanjing Jiangsu China |
| authorships[7].author.id | https://openalex.org/A5100413921 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7119-2519 |
| authorships[7].author.display_name | Yijun Chen |
| authorships[7].countries | AE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I120250893 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Civil and Urban Engineering New York University Abu Dhabi Abu Dhabi United Arab Emirates |
| authorships[7].institutions[0].id | https://openalex.org/I120250893 |
| authorships[7].institutions[0].ror | https://ror.org/00e5k0821 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I120250893, https://openalex.org/I57206974 |
| authorships[7].institutions[0].country_code | AE |
| authorships[7].institutions[0].display_name | New York University Abu Dhabi |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yijun Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Civil and Urban Engineering New York University Abu Dhabi Abu Dhabi United Arab Emirates |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Environmental‐aware deformation prediction of water‐related concrete structures using deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1111/mice.13513 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S206927758 |
| best_oa_location.source.issn | 1093-9687, 1467-8667 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1093-9687 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1111/mice.13513 |
| primary_location.id | doi:10.1111/mice.13513 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S206927758 |
| primary_location.source.issn | 1093-9687, 1467-8667 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1093-9687 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.13513 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| primary_location.landing_page_url | https://doi.org/10.1111/mice.13513 |
| publication_date | 2025-05-19 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2966126335, https://openalex.org/W4205309342, https://openalex.org/W4312084494, https://openalex.org/W4405638174, https://openalex.org/W4313640318, https://openalex.org/W3134775903, https://openalex.org/W4393678255, https://openalex.org/W4284879231, https://openalex.org/W4366609671, https://openalex.org/W3149364118, https://openalex.org/W3158773785, https://openalex.org/W4309756423, https://openalex.org/W3176861907, https://openalex.org/W3120888091, https://openalex.org/W4404248096, https://openalex.org/W4390025237, https://openalex.org/W2996936831, https://openalex.org/W4387536993, https://openalex.org/W4386813595, https://openalex.org/W4387260164, https://openalex.org/W3103298250, https://openalex.org/W4404834463, https://openalex.org/W2921440296, https://openalex.org/W4317951842, https://openalex.org/W4286579687, https://openalex.org/W4311887278, https://openalex.org/W3198612789, https://openalex.org/W4390871945, https://openalex.org/W4386591060, https://openalex.org/W2546277683, https://openalex.org/W4401655954, https://openalex.org/W4316041488, https://openalex.org/W2956171734, https://openalex.org/W3112339060, https://openalex.org/W3153419730, https://openalex.org/W4402110882, https://openalex.org/W3125658501, https://openalex.org/W4220661661, https://openalex.org/W4397011454, https://openalex.org/W4293331863, https://openalex.org/W4310064234, https://openalex.org/W4404182920, https://openalex.org/W4398147649, https://openalex.org/W2942829333, https://openalex.org/W4386823937, https://openalex.org/W4288069699 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 68, 94 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.at | 178 |
| abstract_inverted_index.in | 49 |
| abstract_inverted_index.is | 5, 120, 155 |
| abstract_inverted_index.it | 183 |
| abstract_inverted_index.of | 15, 145, 163 |
| abstract_inverted_index.to | 7, 33, 39, 102, 122, 197 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.The | 143 |
| abstract_inverted_index.and | 12, 27, 45, 59, 77, 83, 110, 128, 135, 188 |
| abstract_inverted_index.dam | 152 |
| abstract_inverted_index.due | 32 |
| abstract_inverted_index.for | 150 |
| abstract_inverted_index.its | 194 |
| abstract_inverted_index.the | 9, 42, 104, 115, 124, 132, 137, 146, 171 |
| abstract_inverted_index.(DL) | 89 |
| abstract_inverted_index.RMSE | 187 |
| abstract_inverted_index.arch | 22, 165 |
| abstract_inverted_index.both | 75 |
| abstract_inverted_index.data | 158 |
| abstract_inverted_index.deep | 87 |
| abstract_inverted_index.fail | 38 |
| abstract_inverted_index.five | 179 |
| abstract_inverted_index.from | 159 |
| abstract_inverted_index.high | 189 |
| abstract_inverted_index.like | 20 |
| abstract_inverted_index.long | 97 |
| abstract_inverted_index.mean | 139 |
| abstract_inverted_index.root | 138 |
| abstract_inverted_index.that | 73, 170 |
| abstract_inverted_index.this | 65 |
| abstract_inverted_index.with | 201 |
| abstract_inverted_index.dams. | 23, 166 |
| abstract_inverted_index.data, | 53 |
| abstract_inverted_index.error | 141 |
| abstract_inverted_index.large | 16 |
| abstract_inverted_index.lower | 186 |
| abstract_inverted_index.model | 72, 101, 126, 149 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.other | 176 |
| abstract_inverted_index.study | 66 |
| abstract_inverted_index.their | 34, 56 |
| abstract_inverted_index.these | 63 |
| abstract_inverted_index.using | 157 |
| abstract_inverted_index.across | 107 |
| abstract_inverted_index.employ | 93 |
| abstract_inverted_index.ensure | 8 |
| abstract_inverted_index.error. | 203 |
| abstract_inverted_index.memory | 99 |
| abstract_inverted_index.method | 173 |
| abstract_inverted_index.models | 177 |
| abstract_inverted_index.points | 162 |
| abstract_inverted_index.square | 140 |
| abstract_inverted_index.(RMSE). | 142 |
| abstract_inverted_index.ability | 196 |
| abstract_inverted_index.address | 62 |
| abstract_inverted_index.between | 80 |
| abstract_inverted_index.capture | 41, 103 |
| abstract_inverted_index.complex | 43 |
| abstract_inverted_index.factors | 82 |
| abstract_inverted_index.machine | 29 |
| abstract_inverted_index.minimal | 202 |
| abstract_inverted_index.ongoing | 13 |
| abstract_inverted_index.optimal | 125 |
| abstract_inverted_index.points. | 181 |
| abstract_inverted_index.provide | 198 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.shallow | 28 |
| abstract_inverted_index.spatial | 46, 76 |
| abstract_inverted_index.thereby | 54 |
| abstract_inverted_index.values, | 192 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 1 |
| abstract_inverted_index.accuracy | 58 |
| abstract_inverted_index.accurate | 199 |
| abstract_inverted_index.achieves | 185 |
| abstract_inverted_index.advanced | 86 |
| abstract_inverted_index.bayesian | 117 |
| abstract_inverted_index.concrete | 18 |
| abstract_inverted_index.inherent | 48 |
| abstract_inverted_index.learning | 30, 88 |
| abstract_inverted_index.limiting | 55 |
| abstract_inverted_index.multiple | 160 |
| abstract_inverted_index.numerous | 108 |
| abstract_inverted_index.proposed | 147 |
| abstract_inverted_index.proposes | 67 |
| abstract_inverted_index.security | 11 |
| abstract_inverted_index.superior | 195 |
| abstract_inverted_index.temporal | 44, 78 |
| abstract_inverted_index.utilized | 121 |
| abstract_inverted_index.algorithm | 119 |
| abstract_inverted_index.ascertain | 123 |
| abstract_inverted_index.essential | 6 |
| abstract_inverted_index.stability | 14 |
| abstract_inverted_index.utilizing | 85 |
| abstract_inverted_index.validated | 156 |
| abstract_inverted_index.(ConvLSTM) | 100 |
| abstract_inverted_index.DL‐based | 148 |
| abstract_inverted_index.indicating | 193 |
| abstract_inverted_index.maximizing | 131 |
| abstract_inverted_index.minimizing | 136 |
| abstract_inverted_index.monitoring | 52, 112, 161, 180 |
| abstract_inverted_index.prediction | 4, 154 |
| abstract_inverted_index.predictive | 57 |
| abstract_inverted_index.regression | 26, 133 |
| abstract_inverted_index.sequences. | 113 |
| abstract_inverted_index.structural | 10 |
| abstract_inverted_index.structures | 19 |
| abstract_inverted_index.Traditional | 24 |
| abstract_inverted_index.algorithmic | 35 |
| abstract_inverted_index.approaches, | 31 |
| abstract_inverted_index.challenges, | 64 |
| abstract_inverted_index.coefficient | 134, 191 |
| abstract_inverted_index.correlation | 190 |
| abstract_inverted_index.deformation | 3, 70, 111, 153 |
| abstract_inverted_index.demonstrate | 169 |
| abstract_inverted_index.forecasting | 71 |
| abstract_inverted_index.high‐arch | 151 |
| abstract_inverted_index.long‐term | 2 |
| abstract_inverted_index.outperforms | 175 |
| abstract_inverted_index.predictions | 200 |
| abstract_inverted_index.robustness. | 60 |
| abstract_inverted_index.statistical | 25 |
| abstract_inverted_index.techniques. | 90 |
| abstract_inverted_index.temperature | 109 |
| abstract_inverted_index.Experimental | 167 |
| abstract_inverted_index.Furthermore, | 114 |
| abstract_inverted_index.architecture | 127 |
| abstract_inverted_index.concurrently | 130 |
| abstract_inverted_index.consistently | 184 |
| abstract_inverted_index.constraints, | 36 |
| abstract_inverted_index.correlations | 79 |
| abstract_inverted_index.deformation, | 84 |
| abstract_inverted_index.dependencies | 47, 106 |
| abstract_inverted_index.incorporates | 74 |
| abstract_inverted_index.optimization | 118 |
| abstract_inverted_index.prototypical | 51 |
| abstract_inverted_index.short‐term | 98 |
| abstract_inverted_index.ultra‐high | 21, 164 |
| abstract_inverted_index.Specifically, | 91 |
| abstract_inverted_index.convolutional | 96 |
| abstract_inverted_index.effectiveness | 144 |
| abstract_inverted_index.environmental | 81 |
| abstract_inverted_index.multi‐point | 69 |
| abstract_inverted_index.significantly | 174 |
| abstract_inverted_index.spatiotemporal | 105 |
| abstract_inverted_index.Quantitatively, | 182 |
| abstract_inverted_index.comprehensively | 40 |
| abstract_inverted_index.water‐related | 17 |
| abstract_inverted_index.hyperparameters, | 129 |
| abstract_inverted_index.multi‐objective | 116 |
| abstract_inverted_index.high‐dimensional | 50 |
| abstract_inverted_index.TransformerConvLSTM | 172 |
| abstract_inverted_index.Transformer‐based | 95 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.98301131 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |