Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet Transform Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.2478/msr-2021-0016
Epileptic seizure attack is caused by abnormal brain activity of human subjects. Certain cases will lead to death. The detection and diagnosis is therefore an important task. It can be performed either by direct patient activity during seizure or by electroencephalogram (EEG) signal analysis by neurologists. EEG signal processing and detection of seizures using machine learning techniques make this task easier than manual detection. To overcome this problem related to a neurological disorder, we have proposed the ensemble learning technique for improved detection of epilepsy seizures from EEG signals. In the first stage, EEG signal decomposition is done by utilizing empirical wavelet transform (EWT) for smooth analysis in terms of sub-bands. Further, features are extracted from each sub. Time and frequency domain features are the two categories used to extract the statistical features. These features are used in a stacked ensemble of deep neural network (DNN) model along with multilayer Perceptron (MLP) for the detection and classification of ictal, inter-ictal, and pre-ictal (normal) signals. The proposed method is verified using two publicly available datasets provided by the University of Bonn (UoB dataset) and Neurology and Sleep Center - New Delhi (NSC-ND dataset). The proposed algorithm resulted in 98.93 % and 98 % accuracy for the UoB and NSC-ND datasets, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2478/msr-2021-0016
- https://www.sciendo.com/pdf/10.2478/msr-2021-0016
- OA Status
- gold
- Cited By
- 16
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3193451475
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3193451475Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2478/msr-2021-0016Digital Object Identifier
- Title
-
Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet TransformWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
Sreelekha Panda, Abhishek Das, Satyasis Mishra, Mihir Narayan MohantyList of authors in order
- Landing page
-
https://doi.org/10.2478/msr-2021-0016Publisher landing page
- PDF URL
-
https://www.sciendo.com/pdf/10.2478/msr-2021-0016Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.sciendo.com/pdf/10.2478/msr-2021-0016Direct OA link when available
- Concepts
-
Ictal, Pattern recognition (psychology), Electroencephalography, Artificial intelligence, Computer science, Epilepsy, Epileptic seizure, Artificial neural network, SIGNAL (programming language), Wavelet transform, Speech recognition, Wavelet, Psychology, Neuroscience, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
16Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 2, 2023: 1, 2022: 9Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3193451475 |
|---|---|
| doi | https://doi.org/10.2478/msr-2021-0016 |
| ids.doi | https://doi.org/10.2478/msr-2021-0016 |
| ids.mag | 3193451475 |
| ids.openalex | https://openalex.org/W3193451475 |
| fwci | 1.61133667 |
| type | article |
| title | Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet Transform |
| biblio.issue | 4 |
| biblio.volume | 21 |
| biblio.last_page | 116 |
| biblio.first_page | 110 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9972000122070312 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T11021 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9815000295639038 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2705 |
| topics[2].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[2].display_name | ECG Monitoring and Analysis |
| is_xpac | False |
| apc_list.value | 35 |
| apc_list.currency | EUR |
| apc_list.value_usd | 37 |
| apc_paid.value | 35 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 37 |
| concepts[0].id | https://openalex.org/C17755696 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7966077327728271 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16564780 |
| concepts[0].display_name | Ictal |
| concepts[1].id | https://openalex.org/C153180895 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7200665473937988 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[1].display_name | Pattern recognition (psychology) |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7085500359535217 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6904736757278442 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6499332189559937 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C2778186239 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5512189269065857 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q41571 |
| concepts[5].display_name | Epilepsy |
| concepts[6].id | https://openalex.org/C2779334592 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5425991415977478 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6279182 |
| concepts[6].display_name | Epileptic seizure |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4613179862499237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C2779843651 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46117058396339417 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[8].display_name | SIGNAL (programming language) |
| concepts[9].id | https://openalex.org/C196216189 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4537449777126312 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[9].display_name | Wavelet transform |
| concepts[10].id | https://openalex.org/C28490314 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3586932420730591 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[10].display_name | Speech recognition |
| concepts[11].id | https://openalex.org/C47432892 |
| concepts[11].level | 2 |
| concepts[11].score | 0.34285402297973633 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[11].display_name | Wavelet |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1358538269996643 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C169760540 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1293470561504364 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[13].display_name | Neuroscience |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/ictal |
| keywords[0].score | 0.7966077327728271 |
| keywords[0].display_name | Ictal |
| keywords[1].id | https://openalex.org/keywords/pattern-recognition |
| keywords[1].score | 0.7200665473937988 |
| keywords[1].display_name | Pattern recognition (psychology) |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.7085500359535217 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6904736757278442 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6499332189559937 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/epilepsy |
| keywords[5].score | 0.5512189269065857 |
| keywords[5].display_name | Epilepsy |
| keywords[6].id | https://openalex.org/keywords/epileptic-seizure |
| keywords[6].score | 0.5425991415977478 |
| keywords[6].display_name | Epileptic seizure |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4613179862499237 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/signal |
| keywords[8].score | 0.46117058396339417 |
| keywords[8].display_name | SIGNAL (programming language) |
| keywords[9].id | https://openalex.org/keywords/wavelet-transform |
| keywords[9].score | 0.4537449777126312 |
| keywords[9].display_name | Wavelet transform |
| keywords[10].id | https://openalex.org/keywords/speech-recognition |
| keywords[10].score | 0.3586932420730591 |
| keywords[10].display_name | Speech recognition |
| keywords[11].id | https://openalex.org/keywords/wavelet |
| keywords[11].score | 0.34285402297973633 |
| keywords[11].display_name | Wavelet |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.1358538269996643 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/neuroscience |
| keywords[13].score | 0.1293470561504364 |
| keywords[13].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.2478/msr-2021-0016 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S92536015 |
| locations[0].source.issn | 1335-8871 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1335-8871 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Measurement Science Review |
| locations[0].source.host_organization | https://openalex.org/P4310320322 |
| locations[0].source.host_organization_name | De Gruyter Open |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| locations[0].source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.sciendo.com/pdf/10.2478/msr-2021-0016 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement Science Review |
| locations[0].landing_page_url | https://doi.org/10.2478/msr-2021-0016 |
| locations[1].id | pmh:oai:doaj.org/article:dd1125e11e964aa4b6d4aa6ea4a0cdb5 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Measurement Science Review, Vol 21, Iss 4, Pp 110-116 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/dd1125e11e964aa4b6d4aa6ea4a0cdb5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5039895720 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sreelekha Panda |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[0].affiliations[0].raw_affiliation_string | Dept. Of ECE , Centurion University of Technology and Management , Odisha , India |
| authorships[0].institutions[0].id | https://openalex.org/I47639616 |
| authorships[0].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sreelekha Panda |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Dept. Of ECE , Centurion University of Technology and Management , Odisha , India |
| authorships[1].author.id | https://openalex.org/A5078109475 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6474-2332 |
| authorships[1].author.display_name | Abhishek Das |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[1].affiliations[0].raw_affiliation_string | Dept. Of ECE , ITER, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar , Odisha , India |
| authorships[1].institutions[0].id | https://openalex.org/I193073490 |
| authorships[1].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhishek Das |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Dept. Of ECE , ITER, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar , Odisha , India |
| authorships[2].author.id | https://openalex.org/A5100709970 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3515-4467 |
| authorships[2].author.display_name | Satyasis Mishra |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47639616 |
| authorships[2].affiliations[0].raw_affiliation_string | Dept. Of ECE , Centurion University of Technology and Management , Odisha , India |
| authorships[2].institutions[0].id | https://openalex.org/I47639616 |
| authorships[2].institutions[0].ror | https://ror.org/03js1g511 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47639616 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Centurion University of Technology and Management |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Satyasis Mishra |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Dept. Of ECE , Centurion University of Technology and Management , Odisha , India |
| authorships[3].author.id | https://openalex.org/A5016209473 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1252-949X |
| authorships[3].author.display_name | Mihir Narayan Mohanty |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I193073490 |
| authorships[3].affiliations[0].raw_affiliation_string | Dept. Of ECE , ITER, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar , Odisha , India |
| authorships[3].institutions[0].id | https://openalex.org/I193073490 |
| authorships[3].institutions[0].ror | https://ror.org/056ep7w45 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I193073490 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Siksha O Anusandhan University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Mihir Narayan Mohanty |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Dept. Of ECE , ITER, Siksha ‘O’ Anusandhan (Deemed to be University) , Bhubaneswar , Odisha , India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.sciendo.com/pdf/10.2478/msr-2021-0016 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Epileptic Seizure Detection using Deep Ensemble Network with Empirical Wavelet Transform |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2075017247, https://openalex.org/W1988222024, https://openalex.org/W2078261043, https://openalex.org/W4318917056, https://openalex.org/W3000816921, https://openalex.org/W2405240590, https://openalex.org/W2809907213, https://openalex.org/W3091390542, https://openalex.org/W2077021924, https://openalex.org/W2166624857 |
| cited_by_count | 16 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | doi:10.2478/msr-2021-0016 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S92536015 |
| best_oa_location.source.issn | 1335-8871 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1335-8871 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Measurement Science Review |
| best_oa_location.source.host_organization | https://openalex.org/P4310320322 |
| best_oa_location.source.host_organization_name | De Gruyter Open |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.sciendo.com/pdf/10.2478/msr-2021-0016 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement Science Review |
| best_oa_location.landing_page_url | https://doi.org/10.2478/msr-2021-0016 |
| primary_location.id | doi:10.2478/msr-2021-0016 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S92536015 |
| primary_location.source.issn | 1335-8871 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1335-8871 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Measurement Science Review |
| primary_location.source.host_organization | https://openalex.org/P4310320322 |
| primary_location.source.host_organization_name | De Gruyter Open |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| primary_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.sciendo.com/pdf/10.2478/msr-2021-0016 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement Science Review |
| primary_location.landing_page_url | https://doi.org/10.2478/msr-2021-0016 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2030775506, https://openalex.org/W2755436114, https://openalex.org/W2518115626, https://openalex.org/W2750384459, https://openalex.org/W2536497859, https://openalex.org/W4243328090, https://openalex.org/W2804043979, https://openalex.org/W2153378539, https://openalex.org/W2804824909, https://openalex.org/W2995395622, https://openalex.org/W2907284364, https://openalex.org/W2942144085, https://openalex.org/W2780723646, https://openalex.org/W2904559787, https://openalex.org/W2419542619, https://openalex.org/W1515321735, https://openalex.org/W2154877864, https://openalex.org/W2030055612, https://openalex.org/W2992736482, https://openalex.org/W2519140045, https://openalex.org/W1984164526, https://openalex.org/W2777400839, https://openalex.org/W2901218039, https://openalex.org/W2983594327, https://openalex.org/W2554037086, https://openalex.org/W2797474959, https://openalex.org/W4241005218, https://openalex.org/W4251708881, https://openalex.org/W2789758093, https://openalex.org/W2964267916, https://openalex.org/W2619720754, https://openalex.org/W2911181963, https://openalex.org/W2994921215, https://openalex.org/W2019900743, https://openalex.org/W2007221293, https://openalex.org/W3048786211, https://openalex.org/W2106822551, https://openalex.org/W2053744708, https://openalex.org/W2053535812, https://openalex.org/W2396202594 |
| referenced_works_count | 40 |
| abstract_inverted_index.% | 199, 202 |
| abstract_inverted_index.- | 188 |
| abstract_inverted_index.a | 71, 139 |
| abstract_inverted_index.98 | 201 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.It | 28 |
| abstract_inverted_index.To | 65 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.by | 6, 33, 40, 45, 99, 176 |
| abstract_inverted_index.in | 108, 138, 197 |
| abstract_inverted_index.is | 4, 23, 97, 168 |
| abstract_inverted_index.of | 10, 52, 84, 110, 142, 158, 179 |
| abstract_inverted_index.or | 39 |
| abstract_inverted_index.to | 17, 70, 129 |
| abstract_inverted_index.we | 74 |
| abstract_inverted_index.EEG | 47, 88, 94 |
| abstract_inverted_index.New | 189 |
| abstract_inverted_index.The | 19, 165, 193 |
| abstract_inverted_index.UoB | 206 |
| abstract_inverted_index.and | 21, 50, 120, 156, 161, 183, 185, 200, 207 |
| abstract_inverted_index.are | 114, 124, 136 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.for | 81, 105, 153, 204 |
| abstract_inverted_index.the | 77, 91, 125, 131, 154, 177, 205 |
| abstract_inverted_index.two | 126, 171 |
| abstract_inverted_index.(UoB | 181 |
| abstract_inverted_index.Bonn | 180 |
| abstract_inverted_index.Time | 119 |
| abstract_inverted_index.deep | 143 |
| abstract_inverted_index.done | 98 |
| abstract_inverted_index.each | 117 |
| abstract_inverted_index.from | 87, 116 |
| abstract_inverted_index.have | 75 |
| abstract_inverted_index.lead | 16 |
| abstract_inverted_index.make | 58 |
| abstract_inverted_index.sub. | 118 |
| abstract_inverted_index.task | 60 |
| abstract_inverted_index.than | 62 |
| abstract_inverted_index.this | 59, 67 |
| abstract_inverted_index.used | 128, 137 |
| abstract_inverted_index.will | 15 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.(DNN) | 146 |
| abstract_inverted_index.(EEG) | 42 |
| abstract_inverted_index.(EWT) | 104 |
| abstract_inverted_index.(MLP) | 152 |
| abstract_inverted_index.98.93 | 198 |
| abstract_inverted_index.Delhi | 190 |
| abstract_inverted_index.Sleep | 186 |
| abstract_inverted_index.These | 134 |
| abstract_inverted_index.along | 148 |
| abstract_inverted_index.brain | 8 |
| abstract_inverted_index.cases | 14 |
| abstract_inverted_index.first | 92 |
| abstract_inverted_index.human | 11 |
| abstract_inverted_index.model | 147 |
| abstract_inverted_index.task. | 27 |
| abstract_inverted_index.terms | 109 |
| abstract_inverted_index.using | 54, 170 |
| abstract_inverted_index.Center | 187 |
| abstract_inverted_index.NSC-ND | 208 |
| abstract_inverted_index.attack | 3 |
| abstract_inverted_index.caused | 5 |
| abstract_inverted_index.death. | 18 |
| abstract_inverted_index.direct | 34 |
| abstract_inverted_index.domain | 122 |
| abstract_inverted_index.during | 37 |
| abstract_inverted_index.easier | 61 |
| abstract_inverted_index.either | 32 |
| abstract_inverted_index.ictal, | 159 |
| abstract_inverted_index.manual | 63 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.neural | 144 |
| abstract_inverted_index.signal | 43, 48, 95 |
| abstract_inverted_index.smooth | 106 |
| abstract_inverted_index.stage, | 93 |
| abstract_inverted_index.(NSC-ND | 191 |
| abstract_inverted_index.Certain | 13 |
| abstract_inverted_index.extract | 130 |
| abstract_inverted_index.machine | 55 |
| abstract_inverted_index.network | 145 |
| abstract_inverted_index.patient | 35 |
| abstract_inverted_index.problem | 68 |
| abstract_inverted_index.related | 69 |
| abstract_inverted_index.seizure | 2, 38 |
| abstract_inverted_index.stacked | 140 |
| abstract_inverted_index.wavelet | 102 |
| abstract_inverted_index.(normal) | 163 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Further, | 112 |
| abstract_inverted_index.abnormal | 7 |
| abstract_inverted_index.accuracy | 203 |
| abstract_inverted_index.activity | 9, 36 |
| abstract_inverted_index.analysis | 44, 107 |
| abstract_inverted_index.dataset) | 182 |
| abstract_inverted_index.datasets | 174 |
| abstract_inverted_index.ensemble | 78, 141 |
| abstract_inverted_index.epilepsy | 85 |
| abstract_inverted_index.features | 113, 123, 135 |
| abstract_inverted_index.improved | 82 |
| abstract_inverted_index.learning | 56, 79 |
| abstract_inverted_index.overcome | 66 |
| abstract_inverted_index.proposed | 76, 166, 194 |
| abstract_inverted_index.provided | 175 |
| abstract_inverted_index.publicly | 172 |
| abstract_inverted_index.resulted | 196 |
| abstract_inverted_index.seizures | 53, 86 |
| abstract_inverted_index.signals. | 89, 164 |
| abstract_inverted_index.verified | 169 |
| abstract_inverted_index.Epileptic | 1 |
| abstract_inverted_index.Neurology | 184 |
| abstract_inverted_index.algorithm | 195 |
| abstract_inverted_index.available | 173 |
| abstract_inverted_index.dataset). | 192 |
| abstract_inverted_index.datasets, | 209 |
| abstract_inverted_index.detection | 20, 51, 83, 155 |
| abstract_inverted_index.diagnosis | 22 |
| abstract_inverted_index.disorder, | 73 |
| abstract_inverted_index.empirical | 101 |
| abstract_inverted_index.extracted | 115 |
| abstract_inverted_index.features. | 133 |
| abstract_inverted_index.frequency | 121 |
| abstract_inverted_index.important | 26 |
| abstract_inverted_index.performed | 31 |
| abstract_inverted_index.pre-ictal | 162 |
| abstract_inverted_index.subjects. | 12 |
| abstract_inverted_index.technique | 80 |
| abstract_inverted_index.therefore | 24 |
| abstract_inverted_index.transform | 103 |
| abstract_inverted_index.utilizing | 100 |
| abstract_inverted_index.Perceptron | 151 |
| abstract_inverted_index.University | 178 |
| abstract_inverted_index.categories | 127 |
| abstract_inverted_index.detection. | 64 |
| abstract_inverted_index.multilayer | 150 |
| abstract_inverted_index.processing | 49 |
| abstract_inverted_index.sub-bands. | 111 |
| abstract_inverted_index.techniques | 57 |
| abstract_inverted_index.statistical | 132 |
| abstract_inverted_index.inter-ictal, | 160 |
| abstract_inverted_index.neurological | 72 |
| abstract_inverted_index.decomposition | 96 |
| abstract_inverted_index.neurologists. | 46 |
| abstract_inverted_index.respectively. | 210 |
| abstract_inverted_index.classification | 157 |
| abstract_inverted_index.electroencephalogram | 41 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.809049 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |