EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/genes12020191
In genome-wide association studies, detecting high-order epistasis is important for analyzing the occurrence of complex human diseases and explaining missing heritability. However, there are various challenges in the actual high-order epistasis detection process due to the large amount of data, “small sample size problem”, diversity of disease models, etc. This paper proposes a multi-objective genetic algorithm (EpiMOGA) for single nucleotide polymorphism (SNP) epistasis detection. The K2 score based on the Bayesian network criterion and the Gini index of the diversity of the binary classification problem were used to guide the search process of the genetic algorithm. Experiments were performed on 26 simulated datasets of different models and a real Alzheimer’s disease dataset. The results indicated that EpiMOGA was obviously superior to other related and competitive methods in both detection efficiency and accuracy, especially for small-sample-size datasets, and the performance of EpiMOGA remained stable across datasets of different disease models. At the same time, a number of SNP loci and 2-order epistasis associated with Alzheimer’s disease were identified by the EpiMOGA method, indicating that this method is capable of identifying high-order epistasis from genome-wide data and can be applied in the study of complex diseases.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/genes12020191
- https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884
- OA Status
- gold
- Cited By
- 17
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3123813045
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3123813045Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/genes12020191Digital Object Identifier
- Title
-
EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-28Full publication date if available
- Authors
-
Yuanyuan Chen, Fengjiao Xu, Cong Pian, Mingmin Xu, Lingpeng Kong, Jingya Fang, Zutan Li, Liangyun ZhangList of authors in order
- Landing page
-
https://doi.org/10.3390/genes12020191Publisher landing page
- PDF URL
-
https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884Direct OA link when available
- Concepts
-
Epistasis, Genome-wide association study, Bayesian probability, Sample size determination, Computer science, Heritability, Single-nucleotide polymorphism, SNP, Data mining, Biology, Computational biology, Artificial intelligence, Statistics, Genetics, Mathematics, Genotype, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 2, 2022: 7, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3123813045 |
|---|---|
| doi | https://doi.org/10.3390/genes12020191 |
| ids.doi | https://doi.org/10.3390/genes12020191 |
| ids.mag | 3123813045 |
| ids.openalex | https://openalex.org/W3123813045 |
| fwci | 2.80835351 |
| type | article |
| title | EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm |
| biblio.issue | 2 |
| biblio.volume | 12 |
| biblio.last_page | 191 |
| biblio.first_page | 191 |
| topics[0].id | https://openalex.org/T10261 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic Associations and Epidemiology |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T10269 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Epigenetics and DNA Methylation |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C61727976 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8513118624687195 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q751748 |
| concepts[0].display_name | Epistasis |
| concepts[1].id | https://openalex.org/C106208931 |
| concepts[1].level | 5 |
| concepts[1].score | 0.5123468637466431 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1098876 |
| concepts[1].display_name | Genome-wide association study |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47686538100242615 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C129848803 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4675746262073517 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2564360 |
| concepts[3].display_name | Sample size determination |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4601915180683136 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C161890455 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4600223898887634 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1503548 |
| concepts[5].display_name | Heritability |
| concepts[6].id | https://openalex.org/C153209595 |
| concepts[6].level | 4 |
| concepts[6].score | 0.4478224813938141 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q501128 |
| concepts[6].display_name | Single-nucleotide polymorphism |
| concepts[7].id | https://openalex.org/C139275648 |
| concepts[7].level | 5 |
| concepts[7].score | 0.4269113540649414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17134011 |
| concepts[7].display_name | SNP |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3621905446052551 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.36117488145828247 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C70721500 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3392893075942993 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[10].display_name | Computational biology |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.29752933979034424 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.25993549823760986 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C54355233 |
| concepts[13].level | 1 |
| concepts[13].score | 0.23315635323524475 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[13].display_name | Genetics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.21152400970458984 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C135763542 |
| concepts[15].level | 3 |
| concepts[15].score | 0.19971099495887756 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q106016 |
| concepts[15].display_name | Genotype |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.14287099242210388 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/epistasis |
| keywords[0].score | 0.8513118624687195 |
| keywords[0].display_name | Epistasis |
| keywords[1].id | https://openalex.org/keywords/genome-wide-association-study |
| keywords[1].score | 0.5123468637466431 |
| keywords[1].display_name | Genome-wide association study |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.47686538100242615 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/sample-size-determination |
| keywords[3].score | 0.4675746262073517 |
| keywords[3].display_name | Sample size determination |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4601915180683136 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/heritability |
| keywords[5].score | 0.4600223898887634 |
| keywords[5].display_name | Heritability |
| keywords[6].id | https://openalex.org/keywords/single-nucleotide-polymorphism |
| keywords[6].score | 0.4478224813938141 |
| keywords[6].display_name | Single-nucleotide polymorphism |
| keywords[7].id | https://openalex.org/keywords/snp |
| keywords[7].score | 0.4269113540649414 |
| keywords[7].display_name | SNP |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3621905446052551 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.36117488145828247 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/computational-biology |
| keywords[10].score | 0.3392893075942993 |
| keywords[10].display_name | Computational biology |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.29752933979034424 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.25993549823760986 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/genetics |
| keywords[13].score | 0.23315635323524475 |
| keywords[13].display_name | Genetics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.21152400970458984 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/genotype |
| keywords[15].score | 0.19971099495887756 |
| keywords[15].display_name | Genotype |
| keywords[16].id | https://openalex.org/keywords/gene |
| keywords[16].score | 0.14287099242210388 |
| keywords[16].display_name | Gene |
| language | en |
| locations[0].id | doi:10.3390/genes12020191 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S194631498 |
| locations[0].source.issn | 2073-4425 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2073-4425 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Genes |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Genes |
| locations[0].landing_page_url | https://doi.org/10.3390/genes12020191 |
| locations[1].id | pmh:oai:doaj.org/article:6e1f4da2c8654240a016dc705927d037 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Genes, Vol 12, Iss 191, p 191 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/6e1f4da2c8654240a016dc705927d037 |
| locations[2].id | pmh:oai:mdpi.com:/2073-4425/12/2/191/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Genes; Volume 12; Issue 2; Pages: 191 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/genes12020191 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:7911965 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Genes (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7911965 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100437877 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7953-1845 |
| authorships[0].author.display_name | Yuanyuan Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[0].institutions[0].id | https://openalex.org/I119454577 |
| authorships[0].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuanyuan Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[1].author.id | https://openalex.org/A5102915113 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7479-8217 |
| authorships[1].author.display_name | Fengjiao Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[1].institutions[0].id | https://openalex.org/I119454577 |
| authorships[1].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Fengjiao Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[2].author.id | https://openalex.org/A5024796378 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7401-2926 |
| authorships[2].author.display_name | Cong Pian |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[2].institutions[0].id | https://openalex.org/I119454577 |
| authorships[2].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cong Pian |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[3].author.id | https://openalex.org/A5102950229 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mingmin Xu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[3].institutions[0].id | https://openalex.org/I119454577 |
| authorships[3].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingmin Xu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[4].author.id | https://openalex.org/A5101497114 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9407-7193 |
| authorships[4].author.display_name | Lingpeng Kong |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[4].institutions[0].id | https://openalex.org/I119454577 |
| authorships[4].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lingpeng Kong |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[5].author.id | https://openalex.org/A5073474817 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jingya Fang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[5].institutions[0].id | https://openalex.org/I119454577 |
| authorships[5].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing Agricultural University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jingya Fang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[6].author.id | https://openalex.org/A5014863730 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zutan Li |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[6].institutions[0].id | https://openalex.org/I119454577 |
| authorships[6].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing Agricultural University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zutan Li |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[7].author.id | https://openalex.org/A5028884115 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-2425-9650 |
| authorships[7].author.display_name | Liangyun Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I119454577 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| authorships[7].institutions[0].id | https://openalex.org/I119454577 |
| authorships[7].institutions[0].ror | https://ror.org/05td3s095 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I119454577 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanjing Agricultural University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liangyun Zhang |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | Department of Mathematics, College of Science, Nanjing Agricultural University, Nanjing 210095, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-02-01T00:00:00 |
| display_name | EpiMOGA: An Epistasis Detection Method Based on a Multi-Objective Genetic Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10261 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic Associations and Epidemiology |
| related_works | https://openalex.org/W2281560785, https://openalex.org/W3152090159, https://openalex.org/W2258846206, https://openalex.org/W2110808585, https://openalex.org/W2329094632, https://openalex.org/W1547817677, https://openalex.org/W2615678788, https://openalex.org/W1994153931, https://openalex.org/W2986565703, https://openalex.org/W2140249224 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/genes12020191 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S194631498 |
| best_oa_location.source.issn | 2073-4425 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2073-4425 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Genes |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Genes |
| best_oa_location.landing_page_url | https://doi.org/10.3390/genes12020191 |
| primary_location.id | doi:10.3390/genes12020191 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S194631498 |
| primary_location.source.issn | 2073-4425 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2073-4425 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Genes |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2073-4425/12/2/191/pdf?version=1611836884 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Genes |
| primary_location.landing_page_url | https://doi.org/10.3390/genes12020191 |
| publication_date | 2021-01-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2116868464, https://openalex.org/W2167638767, https://openalex.org/W2120423544, https://openalex.org/W2161630867, https://openalex.org/W2339367392, https://openalex.org/W2118556950, https://openalex.org/W2041170649, https://openalex.org/W1822695366, https://openalex.org/W2889211202, https://openalex.org/W2307163007, https://openalex.org/W2727539851, https://openalex.org/W1974510435, https://openalex.org/W2971147549, https://openalex.org/W1967395566, https://openalex.org/W2319197375, https://openalex.org/W2113118013, https://openalex.org/W2155781289, https://openalex.org/W2126964466, https://openalex.org/W2158802660, https://openalex.org/W1980175560, https://openalex.org/W2917676566, https://openalex.org/W6685468964, https://openalex.org/W2122210511, https://openalex.org/W2159675211, https://openalex.org/W2955634013, https://openalex.org/W1985598705, https://openalex.org/W1982136320, https://openalex.org/W2779985826, https://openalex.org/W2068240232, https://openalex.org/W2131223994, https://openalex.org/W2232974198, https://openalex.org/W2444577511, https://openalex.org/W2968345401, https://openalex.org/W2524030103, https://openalex.org/W2041086236, https://openalex.org/W6679217206, https://openalex.org/W2095650876, https://openalex.org/W2883945599, https://openalex.org/W2166567981, https://openalex.org/W2312112944, https://openalex.org/W2018173236, https://openalex.org/W1977695175, https://openalex.org/W2035203219, https://openalex.org/W2113349780, https://openalex.org/W2175518449, https://openalex.org/W2131451310 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 52, 107, 153 |
| abstract_inverted_index.26 | 100 |
| abstract_inverted_index.At | 149 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.K2 | 65 |
| abstract_inverted_index.be | 186 |
| abstract_inverted_index.by | 167 |
| abstract_inverted_index.in | 26, 126, 188 |
| abstract_inverted_index.is | 7, 175 |
| abstract_inverted_index.of | 13, 38, 45, 77, 80, 92, 103, 139, 145, 155, 177, 191 |
| abstract_inverted_index.on | 68, 99 |
| abstract_inverted_index.to | 34, 87, 120 |
| abstract_inverted_index.SNP | 156 |
| abstract_inverted_index.The | 64, 112 |
| abstract_inverted_index.and | 17, 73, 106, 123, 130, 136, 158, 184 |
| abstract_inverted_index.are | 23 |
| abstract_inverted_index.can | 185 |
| abstract_inverted_index.due | 33 |
| abstract_inverted_index.for | 9, 57, 133 |
| abstract_inverted_index.the | 11, 27, 35, 69, 74, 78, 81, 89, 93, 137, 150, 168, 189 |
| abstract_inverted_index.was | 117 |
| abstract_inverted_index.Gini | 75 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.both | 127 |
| abstract_inverted_index.data | 183 |
| abstract_inverted_index.etc. | 48 |
| abstract_inverted_index.from | 181 |
| abstract_inverted_index.loci | 157 |
| abstract_inverted_index.real | 108 |
| abstract_inverted_index.same | 151 |
| abstract_inverted_index.size | 42 |
| abstract_inverted_index.that | 115, 172 |
| abstract_inverted_index.this | 173 |
| abstract_inverted_index.used | 86 |
| abstract_inverted_index.were | 85, 97, 165 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.(SNP) | 61 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.data, | 39 |
| abstract_inverted_index.guide | 88 |
| abstract_inverted_index.human | 15 |
| abstract_inverted_index.index | 76 |
| abstract_inverted_index.large | 36 |
| abstract_inverted_index.other | 121 |
| abstract_inverted_index.paper | 50 |
| abstract_inverted_index.score | 66 |
| abstract_inverted_index.study | 190 |
| abstract_inverted_index.there | 22 |
| abstract_inverted_index.time, | 152 |
| abstract_inverted_index.across | 143 |
| abstract_inverted_index.actual | 28 |
| abstract_inverted_index.amount | 37 |
| abstract_inverted_index.binary | 82 |
| abstract_inverted_index.method | 174 |
| abstract_inverted_index.models | 105 |
| abstract_inverted_index.number | 154 |
| abstract_inverted_index.sample | 41 |
| abstract_inverted_index.search | 90 |
| abstract_inverted_index.single | 58 |
| abstract_inverted_index.stable | 142 |
| abstract_inverted_index.2-order | 159 |
| abstract_inverted_index.EpiMOGA | 116, 140, 169 |
| abstract_inverted_index.applied | 187 |
| abstract_inverted_index.capable | 176 |
| abstract_inverted_index.complex | 14, 192 |
| abstract_inverted_index.disease | 46, 110, 147, 164 |
| abstract_inverted_index.genetic | 54, 94 |
| abstract_inverted_index.method, | 170 |
| abstract_inverted_index.methods | 125 |
| abstract_inverted_index.missing | 19 |
| abstract_inverted_index.models, | 47 |
| abstract_inverted_index.models. | 148 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.problem | 84 |
| abstract_inverted_index.process | 32, 91 |
| abstract_inverted_index.related | 122 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.various | 24 |
| abstract_inverted_index.Bayesian | 70 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.dataset. | 111 |
| abstract_inverted_index.datasets | 102, 144 |
| abstract_inverted_index.diseases | 16 |
| abstract_inverted_index.proposes | 51 |
| abstract_inverted_index.remained | 141 |
| abstract_inverted_index.studies, | 3 |
| abstract_inverted_index.superior | 119 |
| abstract_inverted_index.“small | 40 |
| abstract_inverted_index.(EpiMOGA) | 56 |
| abstract_inverted_index.accuracy, | 131 |
| abstract_inverted_index.algorithm | 55 |
| abstract_inverted_index.analyzing | 10 |
| abstract_inverted_index.criterion | 72 |
| abstract_inverted_index.datasets, | 135 |
| abstract_inverted_index.detecting | 4 |
| abstract_inverted_index.detection | 31, 128 |
| abstract_inverted_index.different | 104, 146 |
| abstract_inverted_index.diseases. | 193 |
| abstract_inverted_index.diversity | 44, 79 |
| abstract_inverted_index.epistasis | 6, 30, 62, 160, 180 |
| abstract_inverted_index.important | 8 |
| abstract_inverted_index.indicated | 114 |
| abstract_inverted_index.obviously | 118 |
| abstract_inverted_index.performed | 98 |
| abstract_inverted_index.simulated | 101 |
| abstract_inverted_index.algorithm. | 95 |
| abstract_inverted_index.associated | 161 |
| abstract_inverted_index.challenges | 25 |
| abstract_inverted_index.detection. | 63 |
| abstract_inverted_index.efficiency | 129 |
| abstract_inverted_index.especially | 132 |
| abstract_inverted_index.explaining | 18 |
| abstract_inverted_index.high-order | 5, 29, 179 |
| abstract_inverted_index.identified | 166 |
| abstract_inverted_index.indicating | 171 |
| abstract_inverted_index.nucleotide | 59 |
| abstract_inverted_index.occurrence | 12 |
| abstract_inverted_index.Experiments | 96 |
| abstract_inverted_index.association | 2 |
| abstract_inverted_index.competitive | 124 |
| abstract_inverted_index.genome-wide | 1, 182 |
| abstract_inverted_index.identifying | 178 |
| abstract_inverted_index.performance | 138 |
| abstract_inverted_index.problem”, | 43 |
| abstract_inverted_index.polymorphism | 60 |
| abstract_inverted_index.Alzheimer’s | 109, 163 |
| abstract_inverted_index.heritability. | 20 |
| abstract_inverted_index.classification | 83 |
| abstract_inverted_index.multi-objective | 53 |
| abstract_inverted_index.small-sample-size | 134 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5028884115 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I119454577 |
| citation_normalized_percentile.value | 0.89873745 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |