Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2504.10753
Recommending items to users has long been a fundamental task, and studies have tried to improve it ever since. Most well-known models commonly employ representation learning to map users and items into a unified embedding space for matching assessment. These approaches have primary limitations, especially when dealing with explicit feedback and sparse data contexts. Two primary limitations are their proneness to overfitting and failure to incorporate epistemic uncertainty in predictions. To address these problems, we propose a novel Bayesian Deep Ensemble Collaborative Filtering method named BDECF. To improve model generalization and quality, we utilize Bayesian Neural Networks, which incorporate uncertainty within their weight parameters. In addition, we introduce a new interpretable non-linear matching approach for the user and item embeddings, leveraging the advantages of the attention mechanism. Furthermore, we endorse the implementation of an ensemble-based supermodel to generate more robust and reliable predictions, resulting in a more complete model. Empirical evaluation through extensive experiments and ablation studies across a range of publicly accessible real-world datasets with differing sparsity characteristics confirms our proposed method's effectiveness and the importance of its components.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2504.10753
- https://arxiv.org/pdf/2504.10753
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416053888
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416053888Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2504.10753Digital Object Identifier
- Title
-
Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-14Full publication date if available
- Authors
-
Radin Cheraghi, Amir Mohammad Mahfoozi, Seyed Alireza Zolfaghari, Mimoza Shabani, Maryam Ramezani, Hamid R. RabieeList of authors in order
- Landing page
-
https://arxiv.org/abs/2504.10753Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2504.10753Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2504.10753Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416053888 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2504.10753 |
| ids.doi | https://doi.org/10.48550/arxiv.2504.10753 |
| ids.openalex | https://openalex.org/W4416053888 |
| fwci | |
| type | preprint |
| title | Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2504.10753 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2504.10753 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2504.10753 |
| locations[1].id | doi:10.48550/arxiv.2504.10753 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2504.10753 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5120319560 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Radin Cheraghi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cheraghi, Radin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5120319561 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Amir Mohammad Mahfoozi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mahfoozi, Amir Mohammad |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5089170129 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9917-3400 |
| authorships[2].author.display_name | Seyed Alireza Zolfaghari |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zolfaghari, Sepehr |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5020018303 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1601-8032 |
| authorships[3].author.display_name | Mimoza Shabani |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shabani, Mohammadshayan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101820168 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5044-2526 |
| authorships[4].author.display_name | Maryam Ramezani |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ramezani, Maryam |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5063512925 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9835-4493 |
| authorships[5].author.display_name | Hamid R. Rabiee |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rabiee, Hamid R. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2504.10753 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:47:59.530008 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2504.10753 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2504.10753 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2504.10753 |
| primary_location.id | pmh:oai:arXiv.org:2504.10753 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2504.10753 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2504.10753 |
| publication_date | 2025-04-14 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 32, 76, 108, 145, 158 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.To | 70, 86 |
| abstract_inverted_index.an | 133 |
| abstract_inverted_index.in | 68, 144 |
| abstract_inverted_index.it | 16 |
| abstract_inverted_index.of | 123, 132, 160, 177 |
| abstract_inverted_index.to | 2, 14, 26, 60, 64, 136 |
| abstract_inverted_index.we | 74, 92, 106, 128 |
| abstract_inverted_index.Two | 54 |
| abstract_inverted_index.and | 10, 29, 50, 62, 90, 117, 140, 154, 174 |
| abstract_inverted_index.are | 57 |
| abstract_inverted_index.for | 36, 114 |
| abstract_inverted_index.has | 4 |
| abstract_inverted_index.its | 178 |
| abstract_inverted_index.map | 27 |
| abstract_inverted_index.new | 109 |
| abstract_inverted_index.our | 170 |
| abstract_inverted_index.the | 115, 121, 124, 130, 175 |
| abstract_inverted_index.Deep | 79 |
| abstract_inverted_index.Most | 19 |
| abstract_inverted_index.been | 6 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.ever | 17 |
| abstract_inverted_index.have | 12, 41 |
| abstract_inverted_index.into | 31 |
| abstract_inverted_index.item | 118 |
| abstract_inverted_index.long | 5 |
| abstract_inverted_index.more | 138, 146 |
| abstract_inverted_index.user | 116 |
| abstract_inverted_index.when | 45 |
| abstract_inverted_index.with | 47, 165 |
| abstract_inverted_index.These | 39 |
| abstract_inverted_index.items | 1, 30 |
| abstract_inverted_index.model | 88 |
| abstract_inverted_index.named | 84 |
| abstract_inverted_index.novel | 77 |
| abstract_inverted_index.range | 159 |
| abstract_inverted_index.space | 35 |
| abstract_inverted_index.task, | 9 |
| abstract_inverted_index.their | 58, 101 |
| abstract_inverted_index.these | 72 |
| abstract_inverted_index.tried | 13 |
| abstract_inverted_index.users | 3, 28 |
| abstract_inverted_index.which | 97 |
| abstract_inverted_index.BDECF. | 85 |
| abstract_inverted_index.Neural | 95 |
| abstract_inverted_index.across | 157 |
| abstract_inverted_index.employ | 23 |
| abstract_inverted_index.method | 83 |
| abstract_inverted_index.model. | 148 |
| abstract_inverted_index.models | 21 |
| abstract_inverted_index.robust | 139 |
| abstract_inverted_index.since. | 18 |
| abstract_inverted_index.sparse | 51 |
| abstract_inverted_index.weight | 102 |
| abstract_inverted_index.within | 100 |
| abstract_inverted_index.address | 71 |
| abstract_inverted_index.dealing | 46 |
| abstract_inverted_index.endorse | 129 |
| abstract_inverted_index.failure | 63 |
| abstract_inverted_index.improve | 15, 87 |
| abstract_inverted_index.primary | 42, 55 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.studies | 11, 156 |
| abstract_inverted_index.through | 151 |
| abstract_inverted_index.unified | 33 |
| abstract_inverted_index.utilize | 93 |
| abstract_inverted_index.Bayesian | 78, 94 |
| abstract_inverted_index.Ensemble | 80 |
| abstract_inverted_index.ablation | 155 |
| abstract_inverted_index.approach | 113 |
| abstract_inverted_index.commonly | 22 |
| abstract_inverted_index.complete | 147 |
| abstract_inverted_index.confirms | 169 |
| abstract_inverted_index.datasets | 164 |
| abstract_inverted_index.explicit | 48 |
| abstract_inverted_index.feedback | 49 |
| abstract_inverted_index.generate | 137 |
| abstract_inverted_index.learning | 25 |
| abstract_inverted_index.matching | 37, 112 |
| abstract_inverted_index.method's | 172 |
| abstract_inverted_index.proposed | 171 |
| abstract_inverted_index.publicly | 161 |
| abstract_inverted_index.quality, | 91 |
| abstract_inverted_index.reliable | 141 |
| abstract_inverted_index.sparsity | 167 |
| abstract_inverted_index.Empirical | 149 |
| abstract_inverted_index.Filtering | 82 |
| abstract_inverted_index.Networks, | 96 |
| abstract_inverted_index.addition, | 105 |
| abstract_inverted_index.attention | 125 |
| abstract_inverted_index.contexts. | 53 |
| abstract_inverted_index.differing | 166 |
| abstract_inverted_index.embedding | 34 |
| abstract_inverted_index.epistemic | 66 |
| abstract_inverted_index.extensive | 152 |
| abstract_inverted_index.introduce | 107 |
| abstract_inverted_index.problems, | 73 |
| abstract_inverted_index.proneness | 59 |
| abstract_inverted_index.resulting | 143 |
| abstract_inverted_index.accessible | 162 |
| abstract_inverted_index.advantages | 122 |
| abstract_inverted_index.approaches | 40 |
| abstract_inverted_index.especially | 44 |
| abstract_inverted_index.evaluation | 150 |
| abstract_inverted_index.importance | 176 |
| abstract_inverted_index.leveraging | 120 |
| abstract_inverted_index.mechanism. | 126 |
| abstract_inverted_index.non-linear | 111 |
| abstract_inverted_index.real-world | 163 |
| abstract_inverted_index.supermodel | 135 |
| abstract_inverted_index.well-known | 20 |
| abstract_inverted_index.assessment. | 38 |
| abstract_inverted_index.components. | 179 |
| abstract_inverted_index.embeddings, | 119 |
| abstract_inverted_index.experiments | 153 |
| abstract_inverted_index.fundamental | 8 |
| abstract_inverted_index.incorporate | 65, 98 |
| abstract_inverted_index.limitations | 56 |
| abstract_inverted_index.overfitting | 61 |
| abstract_inverted_index.parameters. | 103 |
| abstract_inverted_index.uncertainty | 67, 99 |
| abstract_inverted_index.Furthermore, | 127 |
| abstract_inverted_index.Recommending | 0 |
| abstract_inverted_index.limitations, | 43 |
| abstract_inverted_index.predictions, | 142 |
| abstract_inverted_index.predictions. | 69 |
| abstract_inverted_index.Collaborative | 81 |
| abstract_inverted_index.effectiveness | 173 |
| abstract_inverted_index.interpretable | 110 |
| abstract_inverted_index.ensemble-based | 134 |
| abstract_inverted_index.generalization | 89 |
| abstract_inverted_index.implementation | 131 |
| abstract_inverted_index.representation | 24 |
| abstract_inverted_index.characteristics | 168 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |