Equal Opportunity of Coverage in Fair Regression Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2311.02243
We study fair machine learning (ML) under predictive uncertainty to enable reliable and trustworthy decision-making. The seminal work of ``equalized coverage'' proposed an uncertainty-aware fairness notion. However, it does not guarantee equal coverage rates across more fine-grained groups (e.g., low-income females) conditioning on the true label and is biased in the assessment of uncertainty. To tackle these limitations, we propose a new uncertainty-aware fairness -- Equal Opportunity of Coverage (EOC) -- that aims to achieve two properties: (1) coverage rates for different groups with similar outcomes are close, and (2) the coverage rate for the entire population remains at a predetermined level. Further, the prediction intervals should be narrow to be informative. We propose Binned Fair Quantile Regression (BFQR), a distribution-free post-processing method to improve EOC with reasonable width for any trained ML models. It first calibrates a hold-out set to bound deviation from EOC, then leverages conformal prediction to maintain EOC on a test set, meanwhile optimizing prediction interval width. Experimental results demonstrate the effectiveness of our method in improving EOC. Our code is publicly available at https://github.com/fangxin-wang/bfqr .
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2311.02243
- https://arxiv.org/pdf/2311.02243
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388512345
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388512345Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2311.02243Digital Object Identifier
- Title
-
Equal Opportunity of Coverage in Fair RegressionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-03Full publication date if available
- Authors
-
Fangxin Wang, Lu Cheng, Ruocheng Guo, Kay Liu, Philip S. YuList of authors in order
- Landing page
-
https://arxiv.org/abs/2311.02243Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2311.02243Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2311.02243Direct OA link when available
- Concepts
-
Computer science, Quantile regression, Set (abstract data type), Coverage probability, Trustworthiness, Interval (graph theory), Regression, Quantile, Population, Code (set theory), Machine learning, Statistics, Confidence interval, Artificial intelligence, Econometrics, Mathematics, Computer security, Combinatorics, Sociology, Demography, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388512345 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2311.02243 |
| ids.doi | https://doi.org/10.48550/arxiv.2311.02243 |
| ids.openalex | https://openalex.org/W4388512345 |
| fwci | |
| type | preprint |
| title | Equal Opportunity of Coverage in Fair Regression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10883 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9821000099182129 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3311 |
| topics[0].subfield.display_name | Safety Research |
| topics[0].display_name | Ethics and Social Impacts of AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6417620182037354 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C63817138 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5888808369636536 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3455889 |
| concepts[1].display_name | Quantile regression |
| concepts[2].id | https://openalex.org/C177264268 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5677388310432434 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[2].display_name | Set (abstract data type) |
| concepts[3].id | https://openalex.org/C2776292839 |
| concepts[3].level | 3 |
| concepts[3].score | 0.520834743976593 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5179217 |
| concepts[3].display_name | Coverage probability |
| concepts[4].id | https://openalex.org/C153701036 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4965875744819641 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q659974 |
| concepts[4].display_name | Trustworthiness |
| concepts[5].id | https://openalex.org/C2778067643 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4946124255657196 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[5].display_name | Interval (graph theory) |
| concepts[6].id | https://openalex.org/C83546350 |
| concepts[6].level | 2 |
| concepts[6].score | 0.479521781206131 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[6].display_name | Regression |
| concepts[7].id | https://openalex.org/C118671147 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46922004222869873 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q578714 |
| concepts[7].display_name | Quantile |
| concepts[8].id | https://openalex.org/C2908647359 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4299023747444153 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[8].display_name | Population |
| concepts[9].id | https://openalex.org/C2776760102 |
| concepts[9].level | 3 |
| concepts[9].score | 0.42871496081352234 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[9].display_name | Code (set theory) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.38563358783721924 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35695305466651917 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C44249647 |
| concepts[12].level | 2 |
| concepts[12].score | 0.34881192445755005 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[12].display_name | Confidence interval |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3415707051753998 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C149782125 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32040315866470337 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[14].display_name | Econometrics |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2153456211090088 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07599031925201416 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C114614502 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[17].display_name | Combinatorics |
| concepts[18].id | https://openalex.org/C144024400 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[18].display_name | Sociology |
| concepts[19].id | https://openalex.org/C149923435 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[19].display_name | Demography |
| concepts[20].id | https://openalex.org/C199360897 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[20].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6417620182037354 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/quantile-regression |
| keywords[1].score | 0.5888808369636536 |
| keywords[1].display_name | Quantile regression |
| keywords[2].id | https://openalex.org/keywords/set |
| keywords[2].score | 0.5677388310432434 |
| keywords[2].display_name | Set (abstract data type) |
| keywords[3].id | https://openalex.org/keywords/coverage-probability |
| keywords[3].score | 0.520834743976593 |
| keywords[3].display_name | Coverage probability |
| keywords[4].id | https://openalex.org/keywords/trustworthiness |
| keywords[4].score | 0.4965875744819641 |
| keywords[4].display_name | Trustworthiness |
| keywords[5].id | https://openalex.org/keywords/interval |
| keywords[5].score | 0.4946124255657196 |
| keywords[5].display_name | Interval (graph theory) |
| keywords[6].id | https://openalex.org/keywords/regression |
| keywords[6].score | 0.479521781206131 |
| keywords[6].display_name | Regression |
| keywords[7].id | https://openalex.org/keywords/quantile |
| keywords[7].score | 0.46922004222869873 |
| keywords[7].display_name | Quantile |
| keywords[8].id | https://openalex.org/keywords/population |
| keywords[8].score | 0.4299023747444153 |
| keywords[8].display_name | Population |
| keywords[9].id | https://openalex.org/keywords/code |
| keywords[9].score | 0.42871496081352234 |
| keywords[9].display_name | Code (set theory) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.38563358783721924 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.35695305466651917 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/confidence-interval |
| keywords[12].score | 0.34881192445755005 |
| keywords[12].display_name | Confidence interval |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3415707051753998 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/econometrics |
| keywords[14].score | 0.32040315866470337 |
| keywords[14].display_name | Econometrics |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.2153456211090088 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/computer-security |
| keywords[16].score | 0.07599031925201416 |
| keywords[16].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2311.02243 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2311.02243 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2311.02243 |
| locations[1].id | doi:10.48550/arxiv.2311.02243 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2311.02243 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101686970 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2559-045X |
| authorships[0].author.display_name | Fangxin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Fangxin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102076839 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Lu Cheng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cheng, Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054719216 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8522-6142 |
| authorships[2].author.display_name | Ruocheng Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Ruocheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5070129944 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2022-9465 |
| authorships[3].author.display_name | Kay Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Kay |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5036357902 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3491-5968 |
| authorships[4].author.display_name | Philip S. Yu |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu, Philip S. |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2311.02243 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Equal Opportunity of Coverage in Fair Regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10883 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9821000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3311 |
| primary_topic.subfield.display_name | Safety Research |
| primary_topic.display_name | Ethics and Social Impacts of AI |
| related_works | https://openalex.org/W4206511378, https://openalex.org/W4206618949, https://openalex.org/W2526321210, https://openalex.org/W3205863630, https://openalex.org/W4318833145, https://openalex.org/W2364275385, https://openalex.org/W4388704167, https://openalex.org/W2007977664, https://openalex.org/W4376874882, https://openalex.org/W2224749288 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2311.02243 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2311.02243 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2311.02243 |
| primary_location.id | pmh:oai:arXiv.org:2311.02243 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2311.02243 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2311.02243 |
| publication_date | 2023-11-03 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 179 |
| abstract_inverted_index.a | 60, 99, 119, 137, 153 |
| abstract_inverted_index.-- | 64, 70 |
| abstract_inverted_index.It | 134 |
| abstract_inverted_index.ML | 132 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.We | 0, 112 |
| abstract_inverted_index.an | 22 |
| abstract_inverted_index.at | 98, 177 |
| abstract_inverted_index.be | 107, 110 |
| abstract_inverted_index.in | 49, 169 |
| abstract_inverted_index.is | 47, 174 |
| abstract_inverted_index.it | 27 |
| abstract_inverted_index.of | 18, 52, 67, 166 |
| abstract_inverted_index.on | 42, 152 |
| abstract_inverted_index.to | 9, 73, 109, 123, 140, 149 |
| abstract_inverted_index.we | 58 |
| abstract_inverted_index.(1) | 77 |
| abstract_inverted_index.(2) | 89 |
| abstract_inverted_index.EOC | 125, 151 |
| abstract_inverted_index.Our | 172 |
| abstract_inverted_index.The | 15 |
| abstract_inverted_index.and | 12, 46, 88 |
| abstract_inverted_index.any | 130 |
| abstract_inverted_index.are | 86 |
| abstract_inverted_index.for | 80, 93, 129 |
| abstract_inverted_index.new | 61 |
| abstract_inverted_index.not | 29 |
| abstract_inverted_index.our | 167 |
| abstract_inverted_index.set | 139 |
| abstract_inverted_index.the | 43, 50, 90, 94, 103, 164 |
| abstract_inverted_index.two | 75 |
| abstract_inverted_index.(ML) | 5 |
| abstract_inverted_index.EOC, | 144 |
| abstract_inverted_index.EOC. | 171 |
| abstract_inverted_index.Fair | 115 |
| abstract_inverted_index.aims | 72 |
| abstract_inverted_index.code | 173 |
| abstract_inverted_index.does | 28 |
| abstract_inverted_index.fair | 2 |
| abstract_inverted_index.from | 143 |
| abstract_inverted_index.more | 35 |
| abstract_inverted_index.rate | 92 |
| abstract_inverted_index.set, | 155 |
| abstract_inverted_index.test | 154 |
| abstract_inverted_index.that | 71 |
| abstract_inverted_index.then | 145 |
| abstract_inverted_index.true | 44 |
| abstract_inverted_index.with | 83, 126 |
| abstract_inverted_index.work | 17 |
| abstract_inverted_index.(EOC) | 69 |
| abstract_inverted_index.Equal | 65 |
| abstract_inverted_index.bound | 141 |
| abstract_inverted_index.equal | 31 |
| abstract_inverted_index.first | 135 |
| abstract_inverted_index.label | 45 |
| abstract_inverted_index.rates | 33, 79 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.these | 56 |
| abstract_inverted_index.under | 6 |
| abstract_inverted_index.width | 128 |
| abstract_inverted_index.(e.g., | 38 |
| abstract_inverted_index.Binned | 114 |
| abstract_inverted_index.across | 34 |
| abstract_inverted_index.biased | 48 |
| abstract_inverted_index.close, | 87 |
| abstract_inverted_index.enable | 10 |
| abstract_inverted_index.entire | 95 |
| abstract_inverted_index.groups | 37, 82 |
| abstract_inverted_index.level. | 101 |
| abstract_inverted_index.method | 122, 168 |
| abstract_inverted_index.narrow | 108 |
| abstract_inverted_index.should | 106 |
| abstract_inverted_index.tackle | 55 |
| abstract_inverted_index.width. | 160 |
| abstract_inverted_index.(BFQR), | 118 |
| abstract_inverted_index.achieve | 74 |
| abstract_inverted_index.improve | 124 |
| abstract_inverted_index.machine | 3 |
| abstract_inverted_index.models. | 133 |
| abstract_inverted_index.notion. | 25 |
| abstract_inverted_index.propose | 59, 113 |
| abstract_inverted_index.remains | 97 |
| abstract_inverted_index.results | 162 |
| abstract_inverted_index.seminal | 16 |
| abstract_inverted_index.similar | 84 |
| abstract_inverted_index.trained | 131 |
| abstract_inverted_index.Coverage | 68 |
| abstract_inverted_index.Further, | 102 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.Quantile | 116 |
| abstract_inverted_index.coverage | 32, 78, 91 |
| abstract_inverted_index.fairness | 24, 63 |
| abstract_inverted_index.females) | 40 |
| abstract_inverted_index.hold-out | 138 |
| abstract_inverted_index.interval | 159 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.maintain | 150 |
| abstract_inverted_index.outcomes | 85 |
| abstract_inverted_index.proposed | 21 |
| abstract_inverted_index.publicly | 175 |
| abstract_inverted_index.reliable | 11 |
| abstract_inverted_index.available | 176 |
| abstract_inverted_index.conformal | 147 |
| abstract_inverted_index.deviation | 142 |
| abstract_inverted_index.different | 81 |
| abstract_inverted_index.guarantee | 30 |
| abstract_inverted_index.improving | 170 |
| abstract_inverted_index.intervals | 105 |
| abstract_inverted_index.leverages | 146 |
| abstract_inverted_index.meanwhile | 156 |
| abstract_inverted_index.Regression | 117 |
| abstract_inverted_index.assessment | 51 |
| abstract_inverted_index.calibrates | 136 |
| abstract_inverted_index.coverage'' | 20 |
| abstract_inverted_index.low-income | 39 |
| abstract_inverted_index.optimizing | 157 |
| abstract_inverted_index.population | 96 |
| abstract_inverted_index.prediction | 104, 148, 158 |
| abstract_inverted_index.predictive | 7 |
| abstract_inverted_index.reasonable | 127 |
| abstract_inverted_index.Opportunity | 66 |
| abstract_inverted_index.``equalized | 19 |
| abstract_inverted_index.demonstrate | 163 |
| abstract_inverted_index.properties: | 76 |
| abstract_inverted_index.trustworthy | 13 |
| abstract_inverted_index.uncertainty | 8 |
| abstract_inverted_index.Experimental | 161 |
| abstract_inverted_index.conditioning | 41 |
| abstract_inverted_index.fine-grained | 36 |
| abstract_inverted_index.informative. | 111 |
| abstract_inverted_index.limitations, | 57 |
| abstract_inverted_index.uncertainty. | 53 |
| abstract_inverted_index.effectiveness | 165 |
| abstract_inverted_index.predetermined | 100 |
| abstract_inverted_index.post-processing | 121 |
| abstract_inverted_index.decision-making. | 14 |
| abstract_inverted_index.distribution-free | 120 |
| abstract_inverted_index.uncertainty-aware | 23, 62 |
| abstract_inverted_index.https://github.com/fangxin-wang/bfqr | 178 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/1 |
| sustainable_development_goals[0].score | 0.4000000059604645 |
| sustainable_development_goals[0].display_name | No poverty |
| citation_normalized_percentile |