Equipping Computational Pathology Systems with Artifact Processing Pipelines: A Showcase for Computation and Performance Trade-offs Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.03.11.24304119
Background Histopathology is a gold standard for cancer diagnosis. It involves extracting tissue specimens from suspicious areas to prepare a glass slide for a microscopic examination. However, histological tissue processing procedures result in the introduction of artifacts, which are ultimately transferred to the digitized version of glass slides, known as whole slide images (WSIs). Artifacts are diagnostically irrelevant areas and may result in wrong predictions from deep learning (DL) algorithms. Therefore, detecting and excluding artifacts in the computational pathology (CPATH) system is essential for reliable automated diagnosis. Methods In this paper, we propose a mixture of experts (MoE) scheme for detecting five notable artifacts, including damaged tissue, blur, folded tissue, air bubbles, and histologically irrelevant blood from WSIs. First, we train independent binary DL models as experts to capture particular artifact morphology. Then, we ensemble their predictions using a fusion mechanism. We apply probabilistic thresholding over the final probability distribution to improve the sensitivity of the MoE. We developed four DL pipelines to evaluate computational and performance trade-offs. These include two MoEs and two multiclass models of state-of-the-art deep convolutional neural networks (DCNNs) and vision transformers (ViTs). These DL pipelines are quantitatively and qualitatively evaluated on external and out-of-distribution (OoD) data to assess generalizability and robustness for artifact detection application. Results We extensively evaluated the proposed MoE and multiclass models. DCNNs-based MoE and ViTs-based MoE schemes outperformed simpler multiclass models and were tested on datasets from different hospitals and cancer types, where MoE using (MobiletNet) DCNNs yielded the best results. The proposed MoE yields 86.15 % F1 and 97.93% sensitivity scores on unseen data, retaining less computational cost for inference than MoE using ViTs. This best performance of MoEs comes with relatively higher computational trade-offs than multiclass models. Furthermore, we apply post-processing to create an artifact segmentation mask, a potential artifact-free RoI map, a quality report, and an artifact-refined WSI for further computational analysis. During the qualitative evaluation, pathologists assessed the predictive performance of MoEs over OoD WSIs. They rated artifact detection and artifact-free area preservation, where the highest agreement translated to the Cohen kappa of 0.82, indicating substantial agreement for the overall diagnostic usability of the DCNN-based MoE scheme. Conclusions The proposed artifact detection pipeline will not only ensure reliable CPATH predictions but may also provide quality control. In this work, the best-performing pipeline for artifact detection is MoE with DCNNs. Our detailed experiments show that there is always a trade-off between performance and computational complexity, and no straightforward DL solution equally suits all types of data and applications. The code and dataset for training and development can be found online at Github and Zenodo, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.03.11.24304119
- https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392815535
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392815535Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.03.11.24304119Digital Object Identifier
- Title
-
Equipping Computational Pathology Systems with Artifact Processing Pipelines: A Showcase for Computation and Performance Trade-offsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-13Full publication date if available
- Authors
-
Neel Kanwal, Farbod Khoraminia, Umay Kiraz, Andrés Mosquera‐Zamudio, Carlos Monteagudo, Emiel A. M. Janssen, Tahlita C.M. Zuiverloon, Chunmig Rong, Kjersti EnganList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.03.11.24304119Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdfDirect OA link when available
- Concepts
-
Computer science, Artificial intelligence, Convolutional neural network, Robustness (evolution), Digital pathology, Artifact (error), Pattern recognition (psychology), Deep learning, Machine learning, Computer vision, Gene, Biochemistry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392815535 |
|---|---|
| doi | https://doi.org/10.1101/2024.03.11.24304119 |
| ids.doi | https://doi.org/10.1101/2024.03.11.24304119 |
| ids.openalex | https://openalex.org/W4392815535 |
| fwci | 1.2775571 |
| type | preprint |
| title | Equipping Computational Pathology Systems with Artifact Processing Pipelines: A Showcase for Computation and Performance Trade-offs |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9890000224113464 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T12874 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7489805221557617 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7402422428131104 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6925166845321655 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.607425332069397 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C2777522853 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5519449710845947 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5276128 |
| concepts[4].display_name | Digital pathology |
| concepts[5].id | https://openalex.org/C2779010991 |
| concepts[5].level | 2 |
| concepts[5].score | 0.550344705581665 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2720909 |
| concepts[5].display_name | Artifact (error) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5393099784851074 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5052035450935364 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.37452057003974915 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32679110765457153 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C104317684 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[10].display_name | Gene |
| concepts[11].id | https://openalex.org/C55493867 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[11].display_name | Biochemistry |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7489805221557617 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7402422428131104 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6925166845321655 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.607425332069397 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/digital-pathology |
| keywords[4].score | 0.5519449710845947 |
| keywords[4].display_name | Digital pathology |
| keywords[5].id | https://openalex.org/keywords/artifact |
| keywords[5].score | 0.550344705581665 |
| keywords[5].display_name | Artifact (error) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5393099784851074 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.5052035450935364 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.37452057003974915 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.32679110765457153 |
| keywords[9].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1101/2024.03.11.24304119 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.03.11.24304119 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5074795857 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8115-0558 |
| authorships[0].author.display_name | Neel Kanwal |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I92008406 |
| authorships[0].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | University of Stavanger |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Neel Kanwal |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| authorships[1].author.id | https://openalex.org/A5031734265 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2817-3996 |
| authorships[1].author.display_name | Farbod Khoraminia |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210149908 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD Rotterdam, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I4210149908 |
| authorships[1].institutions[0].ror | https://ror.org/03r4m3349 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801952686, https://openalex.org/I4210149908 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Erasmus MC Cancer Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Farbod Khoraminia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD Rotterdam, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5025905653 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6721-4877 |
| authorships[2].author.display_name | Umay Kiraz |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800132241 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I92008406 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 021 Stavanger, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[2].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | Stavanger University Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I92008406 |
| authorships[2].institutions[1].ror | https://ror.org/02qte9q33 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I92008406 |
| authorships[2].institutions[1].country_code | NO |
| authorships[2].institutions[1].display_name | University of Stavanger |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Umay Kiraz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 021 Stavanger, Norway, Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway |
| authorships[3].author.id | https://openalex.org/A5079632643 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6158-9619 |
| authorships[3].author.display_name | Andrés Mosquera‐Zamudio |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I16097986, https://openalex.org/I4210158373 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010 Spain |
| authorships[3].institutions[0].id | https://openalex.org/I4210158373 |
| authorships[3].institutions[0].ror | https://ror.org/059wbyv33 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210158373 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | INCLIVA Health Research Institute |
| authorships[3].institutions[1].id | https://openalex.org/I16097986 |
| authorships[3].institutions[1].ror | https://ror.org/043nxc105 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I16097986 |
| authorships[3].institutions[1].country_code | ES |
| authorships[3].institutions[1].display_name | Universitat de València |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andrés Mosquera-Zamudio |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010 Spain |
| authorships[4].author.id | https://openalex.org/A5030244533 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9381-9976 |
| authorships[4].author.display_name | Carlos Monteagudo |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I16097986, https://openalex.org/I4210158373 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010 Spain |
| authorships[4].institutions[0].id | https://openalex.org/I4210158373 |
| authorships[4].institutions[0].ror | https://ror.org/059wbyv33 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210158373 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | INCLIVA Health Research Institute |
| authorships[4].institutions[1].id | https://openalex.org/I16097986 |
| authorships[4].institutions[1].ror | https://ror.org/043nxc105 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I16097986 |
| authorships[4].institutions[1].country_code | ES |
| authorships[4].institutions[1].display_name | Universitat de València |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Carlos Monteagudo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Pathology, INCLIVA Biomedical Research Institute, and University of Valencia, 46010 Spain |
| authorships[5].author.id | https://openalex.org/A5111935133 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Emiel A. M. Janssen |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 021 Stavanger, Norway |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I2800132241 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I2800132241 |
| authorships[5].institutions[0].ror | https://ror.org/04zn72g03 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2800132241 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | Stavanger University Hospital |
| authorships[5].institutions[1].id | https://openalex.org/I92008406 |
| authorships[5].institutions[1].ror | https://ror.org/02qte9q33 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I92008406 |
| authorships[5].institutions[1].country_code | NO |
| authorships[5].institutions[1].display_name | University of Stavanger |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Emiel A.M. Janssen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 021 Stavanger, Norway, Department of Pathology, Stavanger University Hospital, 4011 Stavanger, Norway |
| authorships[6].author.id | https://openalex.org/A5026058364 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Tahlita C.M. Zuiverloon |
| authorships[6].countries | NL |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210149908 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD Rotterdam, The Netherlands |
| authorships[6].institutions[0].id | https://openalex.org/I4210149908 |
| authorships[6].institutions[0].ror | https://ror.org/03r4m3349 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I2801952686, https://openalex.org/I4210149908 |
| authorships[6].institutions[0].country_code | NL |
| authorships[6].institutions[0].display_name | Erasmus MC Cancer Institute |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Tahlita C.M. Zuiverloon |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Urology, University Medical Center Rotterdam, Erasmus MC Cancer Institute, 1035 GD Rotterdam, The Netherlands |
| authorships[7].author.id | https://openalex.org/A5104258435 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Chunmig Rong |
| authorships[7].countries | NO |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| authorships[7].institutions[0].id | https://openalex.org/I92008406 |
| authorships[7].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[7].institutions[0].country_code | NO |
| authorships[7].institutions[0].display_name | University of Stavanger |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chunmig Rong |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| authorships[8].author.id | https://openalex.org/A5068843545 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8970-0067 |
| authorships[8].author.display_name | Kjersti Engan |
| authorships[8].countries | NO |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I92008406 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| authorships[8].institutions[0].id | https://openalex.org/I92008406 |
| authorships[8].institutions[0].ror | https://ror.org/02qte9q33 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I92008406 |
| authorships[8].institutions[0].country_code | NO |
| authorships[8].institutions[0].display_name | University of Stavanger |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Kjersti Engan |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, University of Stavanger, 402 Stavanger, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Equipping Computational Pathology Systems with Artifact Processing Pipelines: A Showcase for Computation and Performance Trade-offs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W52840052, https://openalex.org/W3162837891, https://openalex.org/W1687852313, https://openalex.org/W3029243869, https://openalex.org/W2502336004, https://openalex.org/W1741504538, https://openalex.org/W4226493464, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.03.11.24304119 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.03.11.24304119 |
| primary_location.id | doi:10.1101/2024.03.11.24304119 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/03/13/2024.03.11.24304119.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.03.11.24304119 |
| publication_date | 2024-03-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4313650905, https://openalex.org/W3165730810, https://openalex.org/W2981322795, https://openalex.org/W4388117480, https://openalex.org/W2508627012, https://openalex.org/W3036052161, https://openalex.org/W4285105280, https://openalex.org/W2759577099, https://openalex.org/W4391065733, https://openalex.org/W2126096721, https://openalex.org/W2886595805, https://openalex.org/W2023243618, https://openalex.org/W4378419444, https://openalex.org/W3113891464, https://openalex.org/W4285024288, https://openalex.org/W4220923729, https://openalex.org/W4285022653, https://openalex.org/W2592929672, https://openalex.org/W3216623900, https://openalex.org/W4306177506, https://openalex.org/W6601667473, https://openalex.org/W4387021831, https://openalex.org/W3164024107, https://openalex.org/W3145185940, https://openalex.org/W4309517808, https://openalex.org/W3129790912, https://openalex.org/W4226280312, https://openalex.org/W4318677156, https://openalex.org/W2982083293, https://openalex.org/W3187140243, https://openalex.org/W4205900565, https://openalex.org/W2801540580, https://openalex.org/W4382501920, https://openalex.org/W4319299841, https://openalex.org/W3143116276, https://openalex.org/W2963446712, https://openalex.org/W2194775991, https://openalex.org/W2097117768, https://openalex.org/W3159481202, https://openalex.org/W4313314705, https://openalex.org/W3089090082, https://openalex.org/W3138973186, https://openalex.org/W2984245108, https://openalex.org/W3036198722, https://openalex.org/W4200119336, https://openalex.org/W3203328008, https://openalex.org/W3176446229, https://openalex.org/W4390880024, https://openalex.org/W4298001211, https://openalex.org/W4391430205, https://openalex.org/W1965224467, https://openalex.org/W4389990732, https://openalex.org/W3109000640, https://openalex.org/W3091404072, https://openalex.org/W2107994328, https://openalex.org/W2565806702, https://openalex.org/W2476941703, https://openalex.org/W2939957413, https://openalex.org/W1556323253, https://openalex.org/W2130751560, https://openalex.org/W2123796605, https://openalex.org/W2153702861, https://openalex.org/W2553113627, https://openalex.org/W2021458530, https://openalex.org/W3210627804, https://openalex.org/W2909860570, https://openalex.org/W2921993898, https://openalex.org/W3093253397, https://openalex.org/W3043758055, https://openalex.org/W2965638611, https://openalex.org/W4285036046, https://openalex.org/W4306648046, https://openalex.org/W2566079294, https://openalex.org/W2108598243, https://openalex.org/W4207066074, https://openalex.org/W3102521378, https://openalex.org/W3104138698 |
| referenced_works_count | 77 |
| abstract_inverted_index.% | 256 |
| abstract_inverted_index.a | 4, 20, 24, 94, 139, 299, 304, 401 |
| abstract_inverted_index.DL | 124, 161, 189, 411 |
| abstract_inverted_index.F1 | 257 |
| abstract_inverted_index.In | 89, 380 |
| abstract_inverted_index.It | 10 |
| abstract_inverted_index.We | 142, 158, 212 |
| abstract_inverted_index.an | 295, 308 |
| abstract_inverted_index.as | 50, 126 |
| abstract_inverted_index.at | 433 |
| abstract_inverted_index.be | 430 |
| abstract_inverted_index.in | 33, 63, 76 |
| abstract_inverted_index.is | 3, 82, 389, 399 |
| abstract_inverted_index.no | 409 |
| abstract_inverted_index.of | 36, 46, 96, 155, 177, 278, 324, 346, 356, 417 |
| abstract_inverted_index.on | 196, 234, 262 |
| abstract_inverted_index.to | 18, 42, 128, 151, 163, 202, 293, 342 |
| abstract_inverted_index.we | 92, 120, 134, 290 |
| abstract_inverted_index.MoE | 217, 222, 225, 243, 253, 272, 359, 390 |
| abstract_inverted_index.OoD | 327 |
| abstract_inverted_index.Our | 393 |
| abstract_inverted_index.RoI | 302 |
| abstract_inverted_index.The | 251, 362, 421 |
| abstract_inverted_index.WSI | 310 |
| abstract_inverted_index.air | 111 |
| abstract_inverted_index.all | 415 |
| abstract_inverted_index.and | 60, 73, 113, 166, 173, 184, 193, 198, 205, 218, 223, 231, 239, 258, 307, 333, 405, 408, 419, 423, 427, 435 |
| abstract_inverted_index.are | 39, 56, 191 |
| abstract_inverted_index.but | 374 |
| abstract_inverted_index.can | 429 |
| abstract_inverted_index.for | 7, 23, 84, 100, 207, 269, 311, 351, 386, 425 |
| abstract_inverted_index.may | 61, 375 |
| abstract_inverted_index.not | 368 |
| abstract_inverted_index.the | 34, 43, 77, 147, 153, 156, 215, 248, 316, 321, 338, 343, 352, 357, 383 |
| abstract_inverted_index.two | 171, 174 |
| abstract_inverted_index.(DL) | 69 |
| abstract_inverted_index.MoE. | 157 |
| abstract_inverted_index.MoEs | 172, 279, 325 |
| abstract_inverted_index.They | 329 |
| abstract_inverted_index.This | 275 |
| abstract_inverted_index.also | 376 |
| abstract_inverted_index.area | 335 |
| abstract_inverted_index.best | 249, 276 |
| abstract_inverted_index.code | 422 |
| abstract_inverted_index.cost | 268 |
| abstract_inverted_index.data | 201, 418 |
| abstract_inverted_index.deep | 67, 179 |
| abstract_inverted_index.five | 102 |
| abstract_inverted_index.four | 160 |
| abstract_inverted_index.from | 15, 66, 117, 236 |
| abstract_inverted_index.gold | 5 |
| abstract_inverted_index.less | 266 |
| abstract_inverted_index.map, | 303 |
| abstract_inverted_index.only | 369 |
| abstract_inverted_index.over | 146, 326 |
| abstract_inverted_index.show | 396 |
| abstract_inverted_index.than | 271, 286 |
| abstract_inverted_index.that | 397 |
| abstract_inverted_index.this | 90, 381 |
| abstract_inverted_index.were | 232 |
| abstract_inverted_index.will | 367 |
| abstract_inverted_index.with | 281, 391 |
| abstract_inverted_index.(MoE) | 98 |
| abstract_inverted_index.(OoD) | 200 |
| abstract_inverted_index.0.82, | 347 |
| abstract_inverted_index.86.15 | 255 |
| abstract_inverted_index.CPATH | 372 |
| abstract_inverted_index.Cohen | 344 |
| abstract_inverted_index.DCNNs | 246 |
| abstract_inverted_index.Then, | 133 |
| abstract_inverted_index.These | 169, 188 |
| abstract_inverted_index.ViTs. | 274 |
| abstract_inverted_index.WSIs. | 118, 328 |
| abstract_inverted_index.apply | 143, 291 |
| abstract_inverted_index.areas | 17, 59 |
| abstract_inverted_index.blood | 116 |
| abstract_inverted_index.blur, | 108 |
| abstract_inverted_index.comes | 280 |
| abstract_inverted_index.data, | 264 |
| abstract_inverted_index.final | 148 |
| abstract_inverted_index.found | 431 |
| abstract_inverted_index.glass | 21, 47 |
| abstract_inverted_index.kappa | 345 |
| abstract_inverted_index.known | 49 |
| abstract_inverted_index.mask, | 298 |
| abstract_inverted_index.rated | 330 |
| abstract_inverted_index.slide | 22, 52 |
| abstract_inverted_index.suits | 414 |
| abstract_inverted_index.their | 136 |
| abstract_inverted_index.there | 398 |
| abstract_inverted_index.train | 121 |
| abstract_inverted_index.types | 416 |
| abstract_inverted_index.using | 138, 244, 273 |
| abstract_inverted_index.where | 242, 337 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.whole | 51 |
| abstract_inverted_index.work, | 382 |
| abstract_inverted_index.wrong | 64 |
| abstract_inverted_index.97.93% | 259 |
| abstract_inverted_index.DCNNs. | 392 |
| abstract_inverted_index.During | 315 |
| abstract_inverted_index.First, | 119 |
| abstract_inverted_index.Github | 434 |
| abstract_inverted_index.always | 400 |
| abstract_inverted_index.assess | 203 |
| abstract_inverted_index.binary | 123 |
| abstract_inverted_index.cancer | 8, 240 |
| abstract_inverted_index.create | 294 |
| abstract_inverted_index.ensure | 370 |
| abstract_inverted_index.folded | 109 |
| abstract_inverted_index.fusion | 140 |
| abstract_inverted_index.higher | 283 |
| abstract_inverted_index.images | 53 |
| abstract_inverted_index.models | 125, 176, 230 |
| abstract_inverted_index.neural | 181 |
| abstract_inverted_index.online | 432 |
| abstract_inverted_index.paper, | 91 |
| abstract_inverted_index.result | 32, 62 |
| abstract_inverted_index.scheme | 99 |
| abstract_inverted_index.scores | 261 |
| abstract_inverted_index.system | 81 |
| abstract_inverted_index.tested | 233 |
| abstract_inverted_index.tissue | 13, 29 |
| abstract_inverted_index.types, | 241 |
| abstract_inverted_index.unseen | 263 |
| abstract_inverted_index.vision | 185 |
| abstract_inverted_index.yields | 254 |
| abstract_inverted_index.(CPATH) | 80 |
| abstract_inverted_index.(DCNNs) | 183 |
| abstract_inverted_index.(ViTs). | 187 |
| abstract_inverted_index.(WSIs). | 54 |
| abstract_inverted_index.Methods | 88 |
| abstract_inverted_index.Results | 211 |
| abstract_inverted_index.Zenodo, | 436 |
| abstract_inverted_index.between | 403 |
| abstract_inverted_index.capture | 129 |
| abstract_inverted_index.damaged | 106 |
| abstract_inverted_index.dataset | 424 |
| abstract_inverted_index.equally | 413 |
| abstract_inverted_index.experts | 97, 127 |
| abstract_inverted_index.further | 312 |
| abstract_inverted_index.highest | 339 |
| abstract_inverted_index.improve | 152 |
| abstract_inverted_index.include | 170 |
| abstract_inverted_index.mixture | 95 |
| abstract_inverted_index.models. | 220, 288 |
| abstract_inverted_index.notable | 103 |
| abstract_inverted_index.overall | 353 |
| abstract_inverted_index.prepare | 19 |
| abstract_inverted_index.propose | 93 |
| abstract_inverted_index.provide | 377 |
| abstract_inverted_index.quality | 305, 378 |
| abstract_inverted_index.report, | 306 |
| abstract_inverted_index.scheme. | 360 |
| abstract_inverted_index.schemes | 226 |
| abstract_inverted_index.simpler | 228 |
| abstract_inverted_index.slides, | 48 |
| abstract_inverted_index.tissue, | 107, 110 |
| abstract_inverted_index.version | 45 |
| abstract_inverted_index.yielded | 247 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.artifact | 131, 208, 296, 331, 364, 387 |
| abstract_inverted_index.assessed | 320 |
| abstract_inverted_index.bubbles, | 112 |
| abstract_inverted_index.control. | 379 |
| abstract_inverted_index.datasets | 235 |
| abstract_inverted_index.detailed | 394 |
| abstract_inverted_index.ensemble | 135 |
| abstract_inverted_index.evaluate | 164 |
| abstract_inverted_index.external | 197 |
| abstract_inverted_index.involves | 11 |
| abstract_inverted_index.learning | 68 |
| abstract_inverted_index.networks | 182 |
| abstract_inverted_index.pipeline | 366, 385 |
| abstract_inverted_index.proposed | 216, 252, 363 |
| abstract_inverted_index.reliable | 85, 371 |
| abstract_inverted_index.results. | 250 |
| abstract_inverted_index.solution | 412 |
| abstract_inverted_index.standard | 6 |
| abstract_inverted_index.training | 426 |
| abstract_inverted_index.Artifacts | 55 |
| abstract_inverted_index.agreement | 340, 350 |
| abstract_inverted_index.analysis. | 314 |
| abstract_inverted_index.artifacts | 75 |
| abstract_inverted_index.automated | 86 |
| abstract_inverted_index.detecting | 72, 101 |
| abstract_inverted_index.detection | 209, 332, 365, 388 |
| abstract_inverted_index.developed | 159 |
| abstract_inverted_index.different | 237 |
| abstract_inverted_index.digitized | 44 |
| abstract_inverted_index.essential | 83 |
| abstract_inverted_index.evaluated | 195, 214 |
| abstract_inverted_index.excluding | 74 |
| abstract_inverted_index.hospitals | 238 |
| abstract_inverted_index.including | 105 |
| abstract_inverted_index.inference | 270 |
| abstract_inverted_index.pathology | 79 |
| abstract_inverted_index.pipelines | 162, 190 |
| abstract_inverted_index.potential | 300 |
| abstract_inverted_index.retaining | 265 |
| abstract_inverted_index.specimens | 14 |
| abstract_inverted_index.trade-off | 402 |
| abstract_inverted_index.usability | 355 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.DCNN-based | 358 |
| abstract_inverted_index.Therefore, | 71 |
| abstract_inverted_index.ViTs-based | 224 |
| abstract_inverted_index.artifacts, | 37, 104 |
| abstract_inverted_index.diagnosis. | 9, 87 |
| abstract_inverted_index.diagnostic | 354 |
| abstract_inverted_index.extracting | 12 |
| abstract_inverted_index.indicating | 348 |
| abstract_inverted_index.irrelevant | 58, 115 |
| abstract_inverted_index.mechanism. | 141 |
| abstract_inverted_index.multiclass | 175, 219, 229, 287 |
| abstract_inverted_index.particular | 130 |
| abstract_inverted_index.predictive | 322 |
| abstract_inverted_index.procedures | 31 |
| abstract_inverted_index.processing | 30 |
| abstract_inverted_index.relatively | 282 |
| abstract_inverted_index.robustness | 206 |
| abstract_inverted_index.suspicious | 16 |
| abstract_inverted_index.trade-offs | 285 |
| abstract_inverted_index.translated | 341 |
| abstract_inverted_index.ultimately | 40 |
| abstract_inverted_index.Conclusions | 361 |
| abstract_inverted_index.DCNNs-based | 221 |
| abstract_inverted_index.algorithms. | 70 |
| abstract_inverted_index.complexity, | 407 |
| abstract_inverted_index.development | 428 |
| abstract_inverted_index.evaluation, | 318 |
| abstract_inverted_index.experiments | 395 |
| abstract_inverted_index.extensively | 213 |
| abstract_inverted_index.independent | 122 |
| abstract_inverted_index.microscopic | 25 |
| abstract_inverted_index.morphology. | 132 |
| abstract_inverted_index.performance | 167, 277, 323, 404 |
| abstract_inverted_index.predictions | 65, 137, 373 |
| abstract_inverted_index.probability | 149 |
| abstract_inverted_index.qualitative | 317 |
| abstract_inverted_index.sensitivity | 154, 260 |
| abstract_inverted_index.substantial | 349 |
| abstract_inverted_index.trade-offs. | 168 |
| abstract_inverted_index.transferred | 41 |
| abstract_inverted_index.(MobiletNet) | 245 |
| abstract_inverted_index.Furthermore, | 289 |
| abstract_inverted_index.application. | 210 |
| abstract_inverted_index.distribution | 150 |
| abstract_inverted_index.examination. | 26 |
| abstract_inverted_index.histological | 28 |
| abstract_inverted_index.introduction | 35 |
| abstract_inverted_index.outperformed | 227 |
| abstract_inverted_index.pathologists | 319 |
| abstract_inverted_index.segmentation | 297 |
| abstract_inverted_index.thresholding | 145 |
| abstract_inverted_index.transformers | 186 |
| abstract_inverted_index.applications. | 420 |
| abstract_inverted_index.artifact-free | 301, 334 |
| abstract_inverted_index.computational | 78, 165, 267, 284, 313, 406 |
| abstract_inverted_index.convolutional | 180 |
| abstract_inverted_index.preservation, | 336 |
| abstract_inverted_index.probabilistic | 144 |
| abstract_inverted_index.qualitatively | 194 |
| abstract_inverted_index.respectively. | 437 |
| abstract_inverted_index.Histopathology | 2 |
| abstract_inverted_index.diagnostically | 57 |
| abstract_inverted_index.histologically | 114 |
| abstract_inverted_index.quantitatively | 192 |
| abstract_inverted_index.best-performing | 384 |
| abstract_inverted_index.post-processing | 292 |
| abstract_inverted_index.straightforward | 410 |
| abstract_inverted_index.artifact-refined | 309 |
| abstract_inverted_index.generalizability | 204 |
| abstract_inverted_index.state-of-the-art | 178 |
| abstract_inverted_index.out-of-distribution | 199 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5074795857 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I92008406 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.76865542 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |