Erasure Coded Neural Network Inference via Fisher Averaging Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.01420
Erasure-coded computing has been successfully used in cloud systems to reduce tail latency caused by factors such as straggling servers and heterogeneous traffic variations. A majority of cloud computing traffic now consists of inference on neural networks on shared resources where the response time of inference queries is also adversely affected by the same factors. However, current erasure coding techniques are largely focused on linear computations such as matrix-vector and matrix-matrix multiplications and hence do not work for the highly non-linear neural network functions. In this paper, we seek to design a method to code over neural networks, that is, given two or more neural network models, how to construct a coded model whose output is a linear combination of the outputs of the given neural networks. We formulate the problem as a KL barycenter problem and propose a practical algorithm COIN that leverages the diagonal Fisher information to create a coded model that approximately outputs the desired linear combination of outputs. We conduct experiments to perform erasure coding over neural networks trained on real-world vision datasets and show that the accuracy of the decoded outputs using COIN is significantly higher than other baselines while being extremely compute-efficient.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.01420
- https://arxiv.org/pdf/2409.01420
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403161375
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403161375Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.01420Digital Object Identifier
- Title
-
Erasure Coded Neural Network Inference via Fisher AveragingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-02Full publication date if available
- Authors
-
Divyansh Jhunjhunwala, Neharika Jali, Gauri Joshi, Shiqiang WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.01420Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.01420Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.01420Direct OA link when available
- Concepts
-
Erasure, Inference, Computer science, Artificial neural network, Artificial intelligence, Algorithm, Pattern recognition (psychology), Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403161375 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.01420 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.01420 |
| ids.openalex | https://openalex.org/W4403161375 |
| fwci | |
| type | preprint |
| title | Erasure Coded Neural Network Inference via Fisher Averaging |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T10862 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9761999845504761 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | AI in cancer detection |
| topics[2].id | https://openalex.org/T12702 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9417999982833862 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2808 |
| topics[2].subfield.display_name | Neurology |
| topics[2].display_name | Brain Tumor Detection and Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778790127 |
| concepts[0].level | 2 |
| concepts[0].score | 0.823685348033905 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q484885 |
| concepts[0].display_name | Erasure |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.743103563785553 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.625018835067749 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4736332297325134 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.41502851247787476 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C11413529 |
| concepts[5].level | 1 |
| concepts[5].score | 0.40724682807922363 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[5].display_name | Algorithm |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.36687567830085754 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C199360897 |
| concepts[7].level | 1 |
| concepts[7].score | 0.054222673177719116 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[7].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/erasure |
| keywords[0].score | 0.823685348033905 |
| keywords[0].display_name | Erasure |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.743103563785553 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.625018835067749 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.4736332297325134 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.41502851247787476 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/algorithm |
| keywords[5].score | 0.40724682807922363 |
| keywords[5].display_name | Algorithm |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.36687567830085754 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/programming-language |
| keywords[7].score | 0.054222673177719116 |
| keywords[7].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.01420 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.01420 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.01420 |
| locations[1].id | doi:10.48550/arxiv.2409.01420 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.01420 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5079408504 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Divyansh Jhunjhunwala |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jhunjhunwala, Divyansh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093868335 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Neharika Jali |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jali, Neharika |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067441201 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6372-9697 |
| authorships[2].author.display_name | Gauri Joshi |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshi, Gauri |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100443968 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2090-5512 |
| authorships[3].author.display_name | Shiqiang Wang |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wang, Shiqiang |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.01420 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Erasure Coded Neural Network Inference via Fisher Averaging |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2072016134, https://openalex.org/W2351168932, https://openalex.org/W2108143034, https://openalex.org/W2465690287, https://openalex.org/W2376389741, https://openalex.org/W1997850251, https://openalex.org/W2084549431, https://openalex.org/W913430005, https://openalex.org/W1509695971, https://openalex.org/W1985021129 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.01420 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.01420 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.01420 |
| primary_location.id | pmh:oai:arXiv.org:2409.01420 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.01420 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.01420 |
| publication_date | 2024-09-02 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 24 |
| abstract_inverted_index.a | 91, 110, 116, 132, 138, 150 |
| abstract_inverted_index.In | 84 |
| abstract_inverted_index.KL | 133 |
| abstract_inverted_index.We | 127, 162 |
| abstract_inverted_index.as | 17, 67, 131 |
| abstract_inverted_index.by | 14, 51 |
| abstract_inverted_index.do | 74 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 47, 115, 188 |
| abstract_inverted_index.of | 26, 32, 44, 119, 122, 160, 182 |
| abstract_inverted_index.on | 34, 37, 63, 173 |
| abstract_inverted_index.or | 102 |
| abstract_inverted_index.to | 9, 89, 93, 108, 148, 165 |
| abstract_inverted_index.we | 87 |
| abstract_inverted_index.and | 20, 69, 72, 136, 177 |
| abstract_inverted_index.are | 60 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.has | 2 |
| abstract_inverted_index.how | 107 |
| abstract_inverted_index.is, | 99 |
| abstract_inverted_index.not | 75 |
| abstract_inverted_index.now | 30 |
| abstract_inverted_index.the | 41, 52, 78, 120, 123, 129, 144, 156, 180, 183 |
| abstract_inverted_index.two | 101 |
| abstract_inverted_index.COIN | 141, 187 |
| abstract_inverted_index.also | 48 |
| abstract_inverted_index.been | 3 |
| abstract_inverted_index.code | 94 |
| abstract_inverted_index.more | 103 |
| abstract_inverted_index.over | 95, 169 |
| abstract_inverted_index.same | 53 |
| abstract_inverted_index.seek | 88 |
| abstract_inverted_index.show | 178 |
| abstract_inverted_index.such | 16, 66 |
| abstract_inverted_index.tail | 11 |
| abstract_inverted_index.than | 191 |
| abstract_inverted_index.that | 98, 142, 153, 179 |
| abstract_inverted_index.this | 85 |
| abstract_inverted_index.time | 43 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.work | 76 |
| abstract_inverted_index.being | 195 |
| abstract_inverted_index.cloud | 7, 27 |
| abstract_inverted_index.coded | 111, 151 |
| abstract_inverted_index.given | 100, 124 |
| abstract_inverted_index.hence | 73 |
| abstract_inverted_index.model | 112, 152 |
| abstract_inverted_index.other | 192 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.where | 40 |
| abstract_inverted_index.while | 194 |
| abstract_inverted_index.whose | 113 |
| abstract_inverted_index.Fisher | 146 |
| abstract_inverted_index.caused | 13 |
| abstract_inverted_index.coding | 58, 168 |
| abstract_inverted_index.create | 149 |
| abstract_inverted_index.design | 90 |
| abstract_inverted_index.higher | 190 |
| abstract_inverted_index.highly | 79 |
| abstract_inverted_index.linear | 64, 117, 158 |
| abstract_inverted_index.method | 92 |
| abstract_inverted_index.neural | 35, 81, 96, 104, 125, 170 |
| abstract_inverted_index.output | 114 |
| abstract_inverted_index.paper, | 86 |
| abstract_inverted_index.reduce | 10 |
| abstract_inverted_index.shared | 38 |
| abstract_inverted_index.vision | 175 |
| abstract_inverted_index.conduct | 163 |
| abstract_inverted_index.current | 56 |
| abstract_inverted_index.decoded | 184 |
| abstract_inverted_index.desired | 157 |
| abstract_inverted_index.erasure | 57, 167 |
| abstract_inverted_index.factors | 15 |
| abstract_inverted_index.focused | 62 |
| abstract_inverted_index.largely | 61 |
| abstract_inverted_index.latency | 12 |
| abstract_inverted_index.models, | 106 |
| abstract_inverted_index.network | 82, 105 |
| abstract_inverted_index.outputs | 121, 155, 185 |
| abstract_inverted_index.perform | 166 |
| abstract_inverted_index.problem | 130, 135 |
| abstract_inverted_index.propose | 137 |
| abstract_inverted_index.queries | 46 |
| abstract_inverted_index.servers | 19 |
| abstract_inverted_index.systems | 8 |
| abstract_inverted_index.traffic | 22, 29 |
| abstract_inverted_index.trained | 172 |
| abstract_inverted_index.However, | 55 |
| abstract_inverted_index.accuracy | 181 |
| abstract_inverted_index.affected | 50 |
| abstract_inverted_index.consists | 31 |
| abstract_inverted_index.datasets | 176 |
| abstract_inverted_index.diagonal | 145 |
| abstract_inverted_index.factors. | 54 |
| abstract_inverted_index.majority | 25 |
| abstract_inverted_index.networks | 36, 171 |
| abstract_inverted_index.outputs. | 161 |
| abstract_inverted_index.response | 42 |
| abstract_inverted_index.adversely | 49 |
| abstract_inverted_index.algorithm | 140 |
| abstract_inverted_index.baselines | 193 |
| abstract_inverted_index.computing | 1, 28 |
| abstract_inverted_index.construct | 109 |
| abstract_inverted_index.extremely | 196 |
| abstract_inverted_index.formulate | 128 |
| abstract_inverted_index.inference | 33, 45 |
| abstract_inverted_index.leverages | 143 |
| abstract_inverted_index.networks, | 97 |
| abstract_inverted_index.networks. | 126 |
| abstract_inverted_index.practical | 139 |
| abstract_inverted_index.resources | 39 |
| abstract_inverted_index.barycenter | 134 |
| abstract_inverted_index.functions. | 83 |
| abstract_inverted_index.non-linear | 80 |
| abstract_inverted_index.real-world | 174 |
| abstract_inverted_index.straggling | 18 |
| abstract_inverted_index.techniques | 59 |
| abstract_inverted_index.combination | 118, 159 |
| abstract_inverted_index.experiments | 164 |
| abstract_inverted_index.information | 147 |
| abstract_inverted_index.variations. | 23 |
| abstract_inverted_index.computations | 65 |
| abstract_inverted_index.successfully | 4 |
| abstract_inverted_index.Erasure-coded | 0 |
| abstract_inverted_index.approximately | 154 |
| abstract_inverted_index.heterogeneous | 21 |
| abstract_inverted_index.matrix-matrix | 70 |
| abstract_inverted_index.matrix-vector | 68 |
| abstract_inverted_index.significantly | 189 |
| abstract_inverted_index.multiplications | 71 |
| abstract_inverted_index.compute-efficient. | 197 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |