Error Bounds Revisited, and How to Use Bayesian Statistics While Remaining a Frequentist Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.00314
Signal processing makes extensive use of point estimators and accompanying error bounds. These work well up until the likelihood function has two or more high peaks. When it is important for an estimator to remain reliable, it becomes necessary to consider alternatives, such as set estimators. An obvious first choice might be confidence intervals or confidence regions, but there can be difficulties in computing and interpreting them (and sometimes they might still be blind to multiple peaks in the likelihood). Bayesians seize on this to argue for replacing confidence regions with credible regions. Yet Bayesian statistics require a prior, which is not always a natural part of the problem formulation. This paper demonstrates how a re-interpretation of the prior as a weighting function makes an otherwise Bayesian estimator meaningful in the frequentist context. The weighting function interpretation also serves as a reminder that an estimator should always be designed in the context of its intended application; unlike a prior which ostensibly depends on prior knowledge, a weighting function depends on the intended application. This paper uses the time-of-arrival (TOA) problem to illustrate all these points. It also derives a basic theory of region-based estimators distinct from confidence regions.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.00314
- https://arxiv.org/pdf/2503.00314
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415081429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415081429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.00314Digital Object Identifier
- Title
-
Error Bounds Revisited, and How to Use Bayesian Statistics While Remaining a FrequentistWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-01Full publication date if available
- Authors
-
Ning Xu, Charlie Foster, Jonathan H. MantonList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.00314Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.00314Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.00314Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415081429 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.00314 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.00314 |
| ids.openalex | https://openalex.org/W4415081429 |
| fwci | |
| type | preprint |
| title | Error Bounds Revisited, and How to Use Bayesian Statistics While Remaining a Frequentist |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11918 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.11779999732971191 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.00314 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.00314 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.00314 |
| locations[1].id | doi:10.48550/arxiv.2503.00314 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.00314 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5015793254 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3219-4594 |
| authorships[0].author.display_name | Ning Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xu, Ning |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5067908458 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5041-0601 |
| authorships[1].author.display_name | Charlie Foster |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Foster, Christopher M. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5046301126 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2441-588X |
| authorships[2].author.display_name | Jonathan H. Manton |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Manton, Jonathan H. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.00314 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-12T00:00:00 |
| display_name | Error Bounds Revisited, and How to Use Bayesian Statistics While Remaining a Frequentist |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11918 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.11779999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Forecasting Techniques and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.00314 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.00314 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.00314 |
| primary_location.id | pmh:oai:arXiv.org:2503.00314 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.00314 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.00314 |
| publication_date | 2025-03-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 97, 103, 114, 120, 140, 157, 165, 188 |
| abstract_inverted_index.An | 46 |
| abstract_inverted_index.It | 185 |
| abstract_inverted_index.an | 31, 124, 143 |
| abstract_inverted_index.as | 43, 119, 139 |
| abstract_inverted_index.be | 51, 60, 72, 147 |
| abstract_inverted_index.in | 62, 77, 129, 149 |
| abstract_inverted_index.is | 28, 100 |
| abstract_inverted_index.it | 27, 36 |
| abstract_inverted_index.of | 5, 106, 116, 152, 191 |
| abstract_inverted_index.on | 82, 162, 169 |
| abstract_inverted_index.or | 22, 54 |
| abstract_inverted_index.to | 33, 39, 74, 84, 180 |
| abstract_inverted_index.up | 15 |
| abstract_inverted_index.The | 133 |
| abstract_inverted_index.Yet | 93 |
| abstract_inverted_index.all | 182 |
| abstract_inverted_index.and | 8, 64 |
| abstract_inverted_index.but | 57 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.for | 30, 86 |
| abstract_inverted_index.has | 20 |
| abstract_inverted_index.how | 113 |
| abstract_inverted_index.its | 153 |
| abstract_inverted_index.not | 101 |
| abstract_inverted_index.set | 44 |
| abstract_inverted_index.the | 17, 78, 107, 117, 130, 150, 170, 176 |
| abstract_inverted_index.two | 21 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.(and | 67 |
| abstract_inverted_index.This | 110, 173 |
| abstract_inverted_index.When | 26 |
| abstract_inverted_index.also | 137, 186 |
| abstract_inverted_index.from | 195 |
| abstract_inverted_index.high | 24 |
| abstract_inverted_index.more | 23 |
| abstract_inverted_index.part | 105 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.them | 66 |
| abstract_inverted_index.they | 69 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.uses | 175 |
| abstract_inverted_index.well | 14 |
| abstract_inverted_index.with | 90 |
| abstract_inverted_index.work | 13 |
| abstract_inverted_index.(TOA) | 178 |
| abstract_inverted_index.These | 12 |
| abstract_inverted_index.argue | 85 |
| abstract_inverted_index.basic | 189 |
| abstract_inverted_index.blind | 73 |
| abstract_inverted_index.error | 10 |
| abstract_inverted_index.first | 48 |
| abstract_inverted_index.makes | 2, 123 |
| abstract_inverted_index.might | 50, 70 |
| abstract_inverted_index.paper | 111, 174 |
| abstract_inverted_index.peaks | 76 |
| abstract_inverted_index.point | 6 |
| abstract_inverted_index.prior | 118, 158, 163 |
| abstract_inverted_index.seize | 81 |
| abstract_inverted_index.still | 71 |
| abstract_inverted_index.there | 58 |
| abstract_inverted_index.these | 183 |
| abstract_inverted_index.until | 16 |
| abstract_inverted_index.which | 99, 159 |
| abstract_inverted_index.Signal | 0 |
| abstract_inverted_index.always | 102, 146 |
| abstract_inverted_index.choice | 49 |
| abstract_inverted_index.peaks. | 25 |
| abstract_inverted_index.prior, | 98 |
| abstract_inverted_index.remain | 34 |
| abstract_inverted_index.serves | 138 |
| abstract_inverted_index.should | 145 |
| abstract_inverted_index.theory | 190 |
| abstract_inverted_index.unlike | 156 |
| abstract_inverted_index.becomes | 37 |
| abstract_inverted_index.bounds. | 11 |
| abstract_inverted_index.context | 151 |
| abstract_inverted_index.depends | 161, 168 |
| abstract_inverted_index.derives | 187 |
| abstract_inverted_index.natural | 104 |
| abstract_inverted_index.obvious | 47 |
| abstract_inverted_index.points. | 184 |
| abstract_inverted_index.problem | 108, 179 |
| abstract_inverted_index.regions | 89 |
| abstract_inverted_index.require | 96 |
| abstract_inverted_index.Bayesian | 94, 126 |
| abstract_inverted_index.consider | 40 |
| abstract_inverted_index.context. | 132 |
| abstract_inverted_index.credible | 91 |
| abstract_inverted_index.designed | 148 |
| abstract_inverted_index.distinct | 194 |
| abstract_inverted_index.function | 19, 122, 135, 167 |
| abstract_inverted_index.intended | 154, 171 |
| abstract_inverted_index.multiple | 75 |
| abstract_inverted_index.regions, | 56 |
| abstract_inverted_index.regions. | 92, 197 |
| abstract_inverted_index.reminder | 141 |
| abstract_inverted_index.Bayesians | 80 |
| abstract_inverted_index.computing | 63 |
| abstract_inverted_index.estimator | 32, 127, 144 |
| abstract_inverted_index.extensive | 3 |
| abstract_inverted_index.important | 29 |
| abstract_inverted_index.intervals | 53 |
| abstract_inverted_index.necessary | 38 |
| abstract_inverted_index.otherwise | 125 |
| abstract_inverted_index.reliable, | 35 |
| abstract_inverted_index.replacing | 87 |
| abstract_inverted_index.sometimes | 68 |
| abstract_inverted_index.weighting | 121, 134, 166 |
| abstract_inverted_index.confidence | 52, 55, 88, 196 |
| abstract_inverted_index.estimators | 7, 193 |
| abstract_inverted_index.illustrate | 181 |
| abstract_inverted_index.knowledge, | 164 |
| abstract_inverted_index.likelihood | 18 |
| abstract_inverted_index.meaningful | 128 |
| abstract_inverted_index.ostensibly | 160 |
| abstract_inverted_index.processing | 1 |
| abstract_inverted_index.statistics | 95 |
| abstract_inverted_index.estimators. | 45 |
| abstract_inverted_index.frequentist | 131 |
| abstract_inverted_index.accompanying | 9 |
| abstract_inverted_index.application. | 172 |
| abstract_inverted_index.application; | 155 |
| abstract_inverted_index.demonstrates | 112 |
| abstract_inverted_index.difficulties | 61 |
| abstract_inverted_index.formulation. | 109 |
| abstract_inverted_index.interpreting | 65 |
| abstract_inverted_index.likelihood). | 79 |
| abstract_inverted_index.region-based | 192 |
| abstract_inverted_index.alternatives, | 41 |
| abstract_inverted_index.interpretation | 136 |
| abstract_inverted_index.time-of-arrival | 177 |
| abstract_inverted_index.re-interpretation | 115 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |