ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2402.15903
Federated learning (FL) allows multiple parties (distributed devices) to train a machine learning model without sharing raw data. How to effectively and efficiently utilize the resources on devices and the central server is a highly interesting yet challenging problem. In this paper, we propose an efficient split federated learning algorithm (ESFL) to take full advantage of the powerful computing capabilities at a central server under a split federated learning framework with heterogeneous end devices (EDs). By splitting the model into different submodels between the server and EDs, our approach jointly optimizes user-side workload and server-side computing resource allocation by considering users' heterogeneity. We formulate the whole optimization problem as a mixed-integer non-linear program, which is an NP-hard problem, and develop an iterative approach to obtain an approximate solution efficiently. Extensive simulations have been conducted to validate the significantly increased efficiency of our ESFL approach compared with standard federated learning, split learning, and splitfed learning.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2402.15903
- https://arxiv.org/pdf/2402.15903
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392223797
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392223797Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2402.15903Digital Object Identifier
- Title
-
ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless DevicesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-24Full publication date if available
- Authors
-
Guangyu Zhu, Yiqin Deng, Xianhao Chen, Haixia Zhang, Yuguang Fang, Tan F. WongList of authors in order
- Landing page
-
https://arxiv.org/abs/2402.15903Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2402.15903Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2402.15903Direct OA link when available
- Concepts
-
Computer science, Wireless, Resource (disambiguation), Federated learning, Distributed computing, Computer network, TelecommunicationsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392223797 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2402.15903 |
| ids.doi | https://doi.org/10.48550/arxiv.2402.15903 |
| ids.openalex | https://openalex.org/W4392223797 |
| fwci | |
| type | preprint |
| title | ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9958999752998352 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T10326 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9934999942779541 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Indoor and Outdoor Localization Technologies |
| topics[2].id | https://openalex.org/T11158 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.991100013256073 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Wireless Networks and Protocols |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6915974020957947 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C555944384 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5722244381904602 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[1].display_name | Wireless |
| concepts[2].id | https://openalex.org/C206345919 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5497100353240967 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[2].display_name | Resource (disambiguation) |
| concepts[3].id | https://openalex.org/C2992525071 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5226559638977051 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q50818671 |
| concepts[3].display_name | Federated learning |
| concepts[4].id | https://openalex.org/C120314980 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4367283284664154 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[4].display_name | Distributed computing |
| concepts[5].id | https://openalex.org/C31258907 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4243129789829254 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[5].display_name | Computer network |
| concepts[6].id | https://openalex.org/C76155785 |
| concepts[6].level | 1 |
| concepts[6].score | 0.22282662987709045 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[6].display_name | Telecommunications |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6915974020957947 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/wireless |
| keywords[1].score | 0.5722244381904602 |
| keywords[1].display_name | Wireless |
| keywords[2].id | https://openalex.org/keywords/resource |
| keywords[2].score | 0.5497100353240967 |
| keywords[2].display_name | Resource (disambiguation) |
| keywords[3].id | https://openalex.org/keywords/federated-learning |
| keywords[3].score | 0.5226559638977051 |
| keywords[3].display_name | Federated learning |
| keywords[4].id | https://openalex.org/keywords/distributed-computing |
| keywords[4].score | 0.4367283284664154 |
| keywords[4].display_name | Distributed computing |
| keywords[5].id | https://openalex.org/keywords/computer-network |
| keywords[5].score | 0.4243129789829254 |
| keywords[5].display_name | Computer network |
| keywords[6].id | https://openalex.org/keywords/telecommunications |
| keywords[6].score | 0.22282662987709045 |
| keywords[6].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2402.15903 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://arxiv.org/pdf/2402.15903 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2402.15903 |
| locations[1].id | doi:10.48550/arxiv.2402.15903 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2402.15903 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114535244 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-2894-5091 |
| authorships[0].author.display_name | Guangyu Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Guangyu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5047030075 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4231-6954 |
| authorships[1].author.display_name | Yiqin Deng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Deng, Yiqin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5083484070 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4295-940X |
| authorships[2].author.display_name | Xianhao Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Xianhao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100375644 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4565-4123 |
| authorships[3].author.display_name | Haixia Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Haixia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5016290340 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1079-3871 |
| authorships[4].author.display_name | Yuguang Fang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fang, Yuguang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5030883519 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4457-5805 |
| authorships[5].author.display_name | Tan F. Wong |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wong, Tan F. |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2402.15903 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-02-28T00:00:00 |
| display_name | ESFL: Efficient Split Federated Learning over Resource-Constrained Heterogeneous Wireless Devices |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9958999752998352 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W4298221930, https://openalex.org/W2777914285, https://openalex.org/W4287823391, https://openalex.org/W3013363440, https://openalex.org/W4312762663, https://openalex.org/W4317941881, https://openalex.org/W3035927627, https://openalex.org/W3128909129, https://openalex.org/W4308527955, https://openalex.org/W4366829214 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2402.15903 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2402.15903 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2402.15903 |
| primary_location.id | pmh:oai:arXiv.org:2402.15903 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://arxiv.org/pdf/2402.15903 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2402.15903 |
| publication_date | 2024-02-24 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 33, 61, 65, 109 |
| abstract_inverted_index.By | 75 |
| abstract_inverted_index.In | 39 |
| abstract_inverted_index.We | 102 |
| abstract_inverted_index.an | 44, 115, 120, 125 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.at | 60 |
| abstract_inverted_index.by | 98 |
| abstract_inverted_index.is | 32, 114 |
| abstract_inverted_index.of | 55, 140 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 8, 19, 51, 123, 134 |
| abstract_inverted_index.we | 42 |
| abstract_inverted_index.How | 18 |
| abstract_inverted_index.and | 21, 28, 85, 93, 118, 151 |
| abstract_inverted_index.end | 72 |
| abstract_inverted_index.our | 87, 141 |
| abstract_inverted_index.raw | 16 |
| abstract_inverted_index.the | 24, 29, 56, 77, 83, 104, 136 |
| abstract_inverted_index.yet | 36 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.EDs, | 86 |
| abstract_inverted_index.ESFL | 142 |
| abstract_inverted_index.been | 132 |
| abstract_inverted_index.full | 53 |
| abstract_inverted_index.have | 131 |
| abstract_inverted_index.into | 79 |
| abstract_inverted_index.take | 52 |
| abstract_inverted_index.this | 40 |
| abstract_inverted_index.with | 70, 145 |
| abstract_inverted_index.data. | 17 |
| abstract_inverted_index.model | 13, 78 |
| abstract_inverted_index.split | 46, 66, 149 |
| abstract_inverted_index.train | 9 |
| abstract_inverted_index.under | 64 |
| abstract_inverted_index.which | 113 |
| abstract_inverted_index.whole | 105 |
| abstract_inverted_index.(EDs). | 74 |
| abstract_inverted_index.(ESFL) | 50 |
| abstract_inverted_index.allows | 3 |
| abstract_inverted_index.highly | 34 |
| abstract_inverted_index.obtain | 124 |
| abstract_inverted_index.paper, | 41 |
| abstract_inverted_index.server | 31, 63, 84 |
| abstract_inverted_index.users' | 100 |
| abstract_inverted_index.NP-hard | 116 |
| abstract_inverted_index.between | 82 |
| abstract_inverted_index.central | 30, 62 |
| abstract_inverted_index.develop | 119 |
| abstract_inverted_index.devices | 27, 73 |
| abstract_inverted_index.jointly | 89 |
| abstract_inverted_index.machine | 11 |
| abstract_inverted_index.parties | 5 |
| abstract_inverted_index.problem | 107 |
| abstract_inverted_index.propose | 43 |
| abstract_inverted_index.sharing | 15 |
| abstract_inverted_index.utilize | 23 |
| abstract_inverted_index.without | 14 |
| abstract_inverted_index.approach | 88, 122, 143 |
| abstract_inverted_index.compared | 144 |
| abstract_inverted_index.devices) | 7 |
| abstract_inverted_index.learning | 1, 12, 48, 68 |
| abstract_inverted_index.multiple | 4 |
| abstract_inverted_index.powerful | 57 |
| abstract_inverted_index.problem, | 117 |
| abstract_inverted_index.problem. | 38 |
| abstract_inverted_index.program, | 112 |
| abstract_inverted_index.resource | 96 |
| abstract_inverted_index.solution | 127 |
| abstract_inverted_index.splitfed | 152 |
| abstract_inverted_index.standard | 146 |
| abstract_inverted_index.validate | 135 |
| abstract_inverted_index.workload | 92 |
| abstract_inverted_index.Extensive | 129 |
| abstract_inverted_index.Federated | 0 |
| abstract_inverted_index.advantage | 54 |
| abstract_inverted_index.algorithm | 49 |
| abstract_inverted_index.computing | 58, 95 |
| abstract_inverted_index.conducted | 133 |
| abstract_inverted_index.different | 80 |
| abstract_inverted_index.efficient | 45 |
| abstract_inverted_index.federated | 47, 67, 147 |
| abstract_inverted_index.formulate | 103 |
| abstract_inverted_index.framework | 69 |
| abstract_inverted_index.increased | 138 |
| abstract_inverted_index.iterative | 121 |
| abstract_inverted_index.learning, | 148, 150 |
| abstract_inverted_index.learning. | 153 |
| abstract_inverted_index.optimizes | 90 |
| abstract_inverted_index.resources | 25 |
| abstract_inverted_index.splitting | 76 |
| abstract_inverted_index.submodels | 81 |
| abstract_inverted_index.user-side | 91 |
| abstract_inverted_index.allocation | 97 |
| abstract_inverted_index.efficiency | 139 |
| abstract_inverted_index.non-linear | 111 |
| abstract_inverted_index.approximate | 126 |
| abstract_inverted_index.challenging | 37 |
| abstract_inverted_index.considering | 99 |
| abstract_inverted_index.effectively | 20 |
| abstract_inverted_index.efficiently | 22 |
| abstract_inverted_index.interesting | 35 |
| abstract_inverted_index.server-side | 94 |
| abstract_inverted_index.simulations | 130 |
| abstract_inverted_index.(distributed | 6 |
| abstract_inverted_index.capabilities | 59 |
| abstract_inverted_index.efficiently. | 128 |
| abstract_inverted_index.optimization | 106 |
| abstract_inverted_index.heterogeneous | 71 |
| abstract_inverted_index.mixed-integer | 110 |
| abstract_inverted_index.significantly | 137 |
| abstract_inverted_index.heterogeneity. | 101 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |