Establishment and Thorough External Validation of a FTIR Spectroscopy Classifier for Salmonella Serogroup Differentiation Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1101/2025.03.18.643663
As one of the most relevant food-borne pathogens, the reliable detection, confirmation and fine-typing of Salmonella strains is very important. Salmonella serotype determination by rabbit antisera posts the worldwide-accepted standard but is labor intensive, costly and needs extensive experience. As an alternative, successful discrimination between strains of different serogroups by FTIR spectroscopy has been developed before for various bacterial groups. In the current study, firstly a FTIR Classifier operating on an IR Biotyper ® spectrometer (Bruker, Germany) was designed to distinguish between n= 36 different Salmonella serogroups. A FTIR classifier is an AI-based tool used in FTIR spectroscopy to analyze and classify different materials based on their infrared spectra. Secondly, the differentiation performance of this classifier was determined by a thorough external single-lab validation carried out in line with the Guidelines for Validating Species Identifications Using MALDI-ToF-MS issued by the German Federal Office of Consumer Protection for a targeted identification: The most common Salmonella serogroups in Europe, serogroups O:4 (B), O:6,7 (C1), O:8 (C2-C3) and O:9 (D1) were chosen as target parameters and validated using a total of n= 1039 infrared absorbance spectra from a total of n= 167 strains pertaining to n= 39 serogroups. In summary, serogroups O:4, O:6,7 and O:9 perfectly met the adapted guideline requirements and resulted in a >99% inclusivity each. Serogroup O:8 arrived at a 96.1% true-positive rate due to one deviating strain. This validated classification method can thus be used in routine analysis for quick and easy differentiation of the most common Salmonella serogroups in food surveillance. In addition, using the cluster analysis tools of the IR BT ® , a preselection of isolates before subjecting them to thorough serotyping decreases the workload in current routine analyses.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2025.03.18.643663
- https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408611263
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408611263Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2025.03.18.643663Digital Object Identifier
- Title
-
Establishment and Thorough External Validation of a FTIR Spectroscopy Classifier for Salmonella Serogroup DifferentiationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-18Full publication date if available
- Authors
-
Helene Oberreuter, Miriam Cordovana, Martin Dyk, Jörg RauList of authors in order
- Landing page
-
https://doi.org/10.1101/2025.03.18.643663Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdfDirect OA link when available
- Concepts
-
Salmonella, Fourier transform infrared spectroscopy, Spectroscopy, Classifier (UML), Computer science, Biology, Physics, Artificial intelligence, Optics, Bacteria, Astronomy, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408611263 |
|---|---|
| doi | https://doi.org/10.1101/2025.03.18.643663 |
| ids.doi | https://doi.org/10.1101/2025.03.18.643663 |
| ids.openalex | https://openalex.org/W4408611263 |
| fwci | 2.40140088 |
| type | preprint |
| title | Establishment and Thorough External Validation of a FTIR Spectroscopy Classifier for Salmonella Serogroup Differentiation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.8547000288963318 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781065037 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7424729466438293 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q150839 |
| concepts[0].display_name | Salmonella |
| concepts[1].id | https://openalex.org/C160892712 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7138131856918335 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q901559 |
| concepts[1].display_name | Fourier transform infrared spectroscopy |
| concepts[2].id | https://openalex.org/C32891209 |
| concepts[2].level | 2 |
| concepts[2].score | 0.44048643112182617 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q483666 |
| concepts[2].display_name | Spectroscopy |
| concepts[3].id | https://openalex.org/C95623464 |
| concepts[3].level | 2 |
| concepts[3].score | 0.42699605226516724 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[3].display_name | Classifier (UML) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.38916945457458496 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.27139371633529663 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2182977795600891 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2113904058933258 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C120665830 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10718965530395508 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[8].display_name | Optics |
| concepts[9].id | https://openalex.org/C523546767 |
| concepts[9].level | 2 |
| concepts[9].score | 0.09854987263679504 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10876 |
| concepts[9].display_name | Bacteria |
| concepts[10].id | https://openalex.org/C1276947 |
| concepts[10].level | 1 |
| concepts[10].score | 0.07077381014823914 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[10].display_name | Astronomy |
| concepts[11].id | https://openalex.org/C54355233 |
| concepts[11].level | 1 |
| concepts[11].score | 0.06976965069770813 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[11].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/salmonella |
| keywords[0].score | 0.7424729466438293 |
| keywords[0].display_name | Salmonella |
| keywords[1].id | https://openalex.org/keywords/fourier-transform-infrared-spectroscopy |
| keywords[1].score | 0.7138131856918335 |
| keywords[1].display_name | Fourier transform infrared spectroscopy |
| keywords[2].id | https://openalex.org/keywords/spectroscopy |
| keywords[2].score | 0.44048643112182617 |
| keywords[2].display_name | Spectroscopy |
| keywords[3].id | https://openalex.org/keywords/classifier |
| keywords[3].score | 0.42699605226516724 |
| keywords[3].display_name | Classifier (UML) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.38916945457458496 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.27139371633529663 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.2182977795600891 |
| keywords[6].display_name | Physics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2113904058933258 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/optics |
| keywords[8].score | 0.10718965530395508 |
| keywords[8].display_name | Optics |
| keywords[9].id | https://openalex.org/keywords/bacteria |
| keywords[9].score | 0.09854987263679504 |
| keywords[9].display_name | Bacteria |
| keywords[10].id | https://openalex.org/keywords/astronomy |
| keywords[10].score | 0.07077381014823914 |
| keywords[10].display_name | Astronomy |
| keywords[11].id | https://openalex.org/keywords/genetics |
| keywords[11].score | 0.06976965069770813 |
| keywords[11].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1101/2025.03.18.643663 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2025.03.18.643663 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5052938633 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-7888-1616 |
| authorships[0].author.display_name | Helene Oberreuter |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210144619 |
| authorships[0].affiliations[0].raw_affiliation_string | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210144619 |
| authorships[0].institutions[0].ror | https://ror.org/049waqj15 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210144619 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Chemisches und Veterinäruntersuchungsamt Stuttgart |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Helene Oberreuter |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| authorships[1].author.id | https://openalex.org/A5005026165 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5848-9310 |
| authorships[1].author.display_name | Miriam Cordovana |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210138933 |
| authorships[1].affiliations[0].raw_affiliation_string | Bruker Daltonics GmbH & Co. KG, Bremen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210138933 |
| authorships[1].institutions[0].ror | https://ror.org/04excst21 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I193170854, https://openalex.org/I4210138933 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Bruker (Germany) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Miriam Cordovana |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Bruker Daltonics GmbH & Co. KG, Bremen, Germany |
| authorships[2].author.id | https://openalex.org/A5029659608 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Martin Dyk |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210144619 |
| authorships[2].affiliations[0].raw_affiliation_string | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210144619 |
| authorships[2].institutions[0].ror | https://ror.org/049waqj15 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210144619 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Chemisches und Veterinäruntersuchungsamt Stuttgart |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Martin Dyk |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| authorships[3].author.id | https://openalex.org/A5081488412 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1213-3586 |
| authorships[3].author.display_name | Jörg Rau |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210144619 |
| authorships[3].affiliations[0].raw_affiliation_string | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210144619 |
| authorships[3].institutions[0].ror | https://ror.org/049waqj15 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210144619 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Chemisches und Veterinäruntersuchungsamt Stuttgart |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Joerg Rau |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, Fellbach, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-03-20T00:00:00 |
| display_name | Establishment and Thorough External Validation of a FTIR Spectroscopy Classifier for Salmonella Serogroup Differentiation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.8547000288963318 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W591669468, https://openalex.org/W4308766973, https://openalex.org/W1526072163, https://openalex.org/W3198057223, https://openalex.org/W2054744300, https://openalex.org/W1425765506, https://openalex.org/W1565504409 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2025.03.18.643663 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2025.03.18.643663 |
| primary_location.id | doi:10.1101/2025.03.18.643663 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2025/03/18/2025.03.18.643663.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2025.03.18.643663 |
| publication_date | 2025-03-18 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W90659229, https://openalex.org/W2549694851, https://openalex.org/W4232096031, https://openalex.org/W2075330115, https://openalex.org/W2766244681, https://openalex.org/W2902792599, https://openalex.org/W2004562858, https://openalex.org/W2137503780, https://openalex.org/W1977988748, https://openalex.org/W2053565268, https://openalex.org/W2078156947, https://openalex.org/W2417140916, https://openalex.org/W2006496026, https://openalex.org/W2163463962, https://openalex.org/W2181782132, https://openalex.org/W2813071235, https://openalex.org/W2972489812, https://openalex.org/W4294770447, https://openalex.org/W3152896225, https://openalex.org/W4404377465, https://openalex.org/W3214897475, https://openalex.org/W4387952799, https://openalex.org/W1687456515 |
| referenced_works_count | 23 |
| abstract_inverted_index., | 266 |
| abstract_inverted_index.A | 88 |
| abstract_inverted_index.a | 66, 120, 148, 176, 185, 212, 220, 267 |
| abstract_inverted_index.36 | 84 |
| abstract_inverted_index.39 | 194 |
| abstract_inverted_index.As | 1, 40 |
| abstract_inverted_index.BT | 264 |
| abstract_inverted_index.IR | 72, 263 |
| abstract_inverted_index.In | 61, 196, 254 |
| abstract_inverted_index.an | 41, 71, 92 |
| abstract_inverted_index.as | 170 |
| abstract_inverted_index.at | 219 |
| abstract_inverted_index.be | 235 |
| abstract_inverted_index.by | 24, 50, 119, 139 |
| abstract_inverted_index.in | 96, 127, 156, 211, 237, 251, 280 |
| abstract_inverted_index.is | 18, 32, 91 |
| abstract_inverted_index.n= | 83, 179, 188, 193 |
| abstract_inverted_index.of | 3, 15, 47, 114, 144, 178, 187, 245, 261, 269 |
| abstract_inverted_index.on | 70, 106 |
| abstract_inverted_index.to | 80, 99, 192, 225, 274 |
| abstract_inverted_index.® | 74, 265 |
| abstract_inverted_index.167 | 189 |
| abstract_inverted_index.O:4 | 159 |
| abstract_inverted_index.O:8 | 163, 217 |
| abstract_inverted_index.O:9 | 166, 202 |
| abstract_inverted_index.The | 151 |
| abstract_inverted_index.and | 13, 36, 101, 165, 173, 201, 209, 242 |
| abstract_inverted_index.but | 31 |
| abstract_inverted_index.can | 233 |
| abstract_inverted_index.due | 224 |
| abstract_inverted_index.for | 57, 132, 147, 240 |
| abstract_inverted_index.has | 53 |
| abstract_inverted_index.met | 204 |
| abstract_inverted_index.one | 2, 226 |
| abstract_inverted_index.out | 126 |
| abstract_inverted_index.the | 4, 9, 28, 62, 111, 130, 140, 205, 246, 257, 262, 278 |
| abstract_inverted_index.was | 78, 117 |
| abstract_inverted_index.(B), | 160 |
| abstract_inverted_index.(D1) | 167 |
| abstract_inverted_index.1039 | 180 |
| abstract_inverted_index.FTIR | 51, 67, 89, 97 |
| abstract_inverted_index.O:4, | 199 |
| abstract_inverted_index.This | 229 |
| abstract_inverted_index.been | 54 |
| abstract_inverted_index.easy | 243 |
| abstract_inverted_index.food | 252 |
| abstract_inverted_index.from | 184 |
| abstract_inverted_index.line | 128 |
| abstract_inverted_index.most | 5, 152, 247 |
| abstract_inverted_index.rate | 223 |
| abstract_inverted_index.them | 273 |
| abstract_inverted_index.this | 115 |
| abstract_inverted_index.thus | 234 |
| abstract_inverted_index.tool | 94 |
| abstract_inverted_index.used | 95, 236 |
| abstract_inverted_index.very | 19 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.with | 129 |
| abstract_inverted_index.(C1), | 162 |
| abstract_inverted_index.96.1% | 221 |
| abstract_inverted_index.O:6,7 | 161, 200 |
| abstract_inverted_index.Using | 136 |
| abstract_inverted_index.based | 105 |
| abstract_inverted_index.each. | 215 |
| abstract_inverted_index.labor | 33 |
| abstract_inverted_index.needs | 37 |
| abstract_inverted_index.posts | 27 |
| abstract_inverted_index.quick | 241 |
| abstract_inverted_index.their | 107 |
| abstract_inverted_index.tools | 260 |
| abstract_inverted_index.total | 177, 186 |
| abstract_inverted_index.using | 175, 256 |
| abstract_inverted_index.German | 141 |
| abstract_inverted_index.Office | 143 |
| abstract_inverted_index.before | 56, 271 |
| abstract_inverted_index.chosen | 169 |
| abstract_inverted_index.common | 153, 248 |
| abstract_inverted_index.costly | 35 |
| abstract_inverted_index.issued | 138 |
| abstract_inverted_index.method | 232 |
| abstract_inverted_index.rabbit | 25 |
| abstract_inverted_index.study, | 64 |
| abstract_inverted_index.target | 171 |
| abstract_inverted_index.>99% | 213 |
| abstract_inverted_index.(C2-C3) | 164 |
| abstract_inverted_index.Europe, | 157 |
| abstract_inverted_index.Federal | 142 |
| abstract_inverted_index.Species | 134 |
| abstract_inverted_index.adapted | 206 |
| abstract_inverted_index.analyze | 100 |
| abstract_inverted_index.arrived | 218 |
| abstract_inverted_index.between | 45, 82 |
| abstract_inverted_index.carried | 125 |
| abstract_inverted_index.cluster | 258 |
| abstract_inverted_index.current | 63, 281 |
| abstract_inverted_index.firstly | 65 |
| abstract_inverted_index.groups. | 60 |
| abstract_inverted_index.routine | 238, 282 |
| abstract_inverted_index.spectra | 183 |
| abstract_inverted_index.strain. | 228 |
| abstract_inverted_index.strains | 17, 46, 190 |
| abstract_inverted_index.various | 58 |
| abstract_inverted_index.(Bruker, | 76 |
| abstract_inverted_index.AI-based | 93 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Biotyper | 73 |
| abstract_inverted_index.Consumer | 145 |
| abstract_inverted_index.Germany) | 77 |
| abstract_inverted_index.analysis | 239, 259 |
| abstract_inverted_index.antisera | 26 |
| abstract_inverted_index.classify | 102 |
| abstract_inverted_index.designed | 79 |
| abstract_inverted_index.external | 122 |
| abstract_inverted_index.infrared | 108, 181 |
| abstract_inverted_index.isolates | 270 |
| abstract_inverted_index.relevant | 6 |
| abstract_inverted_index.reliable | 10 |
| abstract_inverted_index.resulted | 210 |
| abstract_inverted_index.serotype | 22 |
| abstract_inverted_index.spectra. | 109 |
| abstract_inverted_index.standard | 30 |
| abstract_inverted_index.summary, | 197 |
| abstract_inverted_index.targeted | 149 |
| abstract_inverted_index.thorough | 121, 275 |
| abstract_inverted_index.workload | 279 |
| abstract_inverted_index.Secondly, | 110 |
| abstract_inverted_index.Serogroup | 216 |
| abstract_inverted_index.addition, | 255 |
| abstract_inverted_index.analyses. | 283 |
| abstract_inverted_index.bacterial | 59 |
| abstract_inverted_index.decreases | 277 |
| abstract_inverted_index.developed | 55 |
| abstract_inverted_index.deviating | 227 |
| abstract_inverted_index.different | 48, 85, 103 |
| abstract_inverted_index.extensive | 38 |
| abstract_inverted_index.guideline | 207 |
| abstract_inverted_index.materials | 104 |
| abstract_inverted_index.operating | 69 |
| abstract_inverted_index.perfectly | 203 |
| abstract_inverted_index.validated | 174, 230 |
| abstract_inverted_index.Classifier | 68 |
| abstract_inverted_index.Guidelines | 131 |
| abstract_inverted_index.Protection | 146 |
| abstract_inverted_index.Salmonella | 16, 21, 86, 154, 249 |
| abstract_inverted_index.Validating | 133 |
| abstract_inverted_index.absorbance | 182 |
| abstract_inverted_index.classifier | 90, 116 |
| abstract_inverted_index.detection, | 11 |
| abstract_inverted_index.determined | 118 |
| abstract_inverted_index.food-borne | 7 |
| abstract_inverted_index.important. | 20 |
| abstract_inverted_index.intensive, | 34 |
| abstract_inverted_index.parameters | 172 |
| abstract_inverted_index.pathogens, | 8 |
| abstract_inverted_index.pertaining | 191 |
| abstract_inverted_index.serogroups | 49, 155, 158, 198, 250 |
| abstract_inverted_index.serotyping | 276 |
| abstract_inverted_index.single-lab | 123 |
| abstract_inverted_index.subjecting | 272 |
| abstract_inverted_index.successful | 43 |
| abstract_inverted_index.validation | 124 |
| abstract_inverted_index.distinguish | 81 |
| abstract_inverted_index.experience. | 39 |
| abstract_inverted_index.fine-typing | 14 |
| abstract_inverted_index.inclusivity | 214 |
| abstract_inverted_index.performance | 113 |
| abstract_inverted_index.serogroups. | 87, 195 |
| abstract_inverted_index.MALDI-ToF-MS | 137 |
| abstract_inverted_index.alternative, | 42 |
| abstract_inverted_index.confirmation | 12 |
| abstract_inverted_index.preselection | 268 |
| abstract_inverted_index.requirements | 208 |
| abstract_inverted_index.spectrometer | 75 |
| abstract_inverted_index.spectroscopy | 52, 98 |
| abstract_inverted_index.determination | 23 |
| abstract_inverted_index.surveillance. | 253 |
| abstract_inverted_index.true-positive | 222 |
| abstract_inverted_index.classification | 231 |
| abstract_inverted_index.discrimination | 44 |
| abstract_inverted_index.Identifications | 135 |
| abstract_inverted_index.differentiation | 112, 244 |
| abstract_inverted_index.identification: | 150 |
| abstract_inverted_index.worldwide-accepted | 29 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5052938633 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210144619 |
| citation_normalized_percentile.value | 0.76016853 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |