Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.7150/ijms.100572
The clinical manifestation of aortic dissection (AD) is complex and varied, making early diagnosis crucial for patient survival. This study aimed to identify immune-related markers to establish a nomogram model for AD diagnosis. Three datasets from GEO-GSE52093, GSE147026 and GSE153434-were combined and used for identification of immune-related causative genes using weighted gene co-expression network analysis, and 136 immune-related genes were obtained. Then, 15 pivotal genes were screened by the protein-protein interaction network. Through machine learning including the Least Absolute Shrinkage and Selection Operator algorithm, random forest algorithm, and multivariate logistic regression, four key feature genes were obtained-CXCL1, ITGA5, PTX3, and TIMP1-and the diagnostic scores based on these four genes were proved to be effective in distinguishing between AD patients and healthy donors. External dataset (GSE98770 and GSE190635) validation revealed this nomogram displayed strong predictive significance. Further analysis revealed that these genes are related with neutrophils, resting NK cells, resting mast cells, activated mast cells, activated dendritic cells, central memory CD4 T cells, γδ T cells, natural killer T cells, and myeloid-derived suppressor cells in AD. Finally, these four genes were validated to be upregulated in AD patients' tissue and serum samples compared with controls. These results suggest that this nomogram model, using machine learning identified four immune-related genes CXCL1, ITGA5, PTX3, and TIMP1, displays superior diagnostic ability in distinguishing AD and healthy individuals, and immune cells commonly associated with these hub genes may be therapeutic targets for AD.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7150/ijms.100572
- OA Status
- gold
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406960843
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406960843Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7150/ijms.100572Digital Object Identifier
- Title
-
Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-21Full publication date if available
- Authors
-
Yanjun Hou, Yangyang Zhao, Zhensu Shi, Yipeng Pan, Kaijia Shi, Chaoyang Zhao, Shengnan Liu, Yongkun Chen, Lini Zhao, Jizhen Wu, Guangquan Ge, Jie WeiList of authors in order
- Landing page
-
https://doi.org/10.7150/ijms.100572Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7150/ijms.100572Direct OA link when available
- Concepts
-
Nomogram, Aortic dissection, Immune system, Gene, Medicine, Dissection (medical), Computer science, Machine learning, Artificial intelligence, Computational biology, Radiology, Surgery, Immunology, Internal medicine, Biology, Aorta, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406960843 |
|---|---|
| doi | https://doi.org/10.7150/ijms.100572 |
| ids.doi | https://doi.org/10.7150/ijms.100572 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39991758 |
| ids.openalex | https://openalex.org/W4406960843 |
| fwci | 4.88980793 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D049451 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Nomograms |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D000784 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Aortic Dissection |
| mesh[3].qualifier_ui | Q000276 |
| mesh[3].descriptor_ui | D000784 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | immunology |
| mesh[3].descriptor_name | Aortic Dissection |
| mesh[4].qualifier_ui | Q000175 |
| mesh[4].descriptor_ui | D000784 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | diagnosis |
| mesh[4].descriptor_name | Aortic Dissection |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D019715 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | Tissue Inhibitor of Metalloproteinase-1 |
| mesh[7].qualifier_ui | Q000097 |
| mesh[7].descriptor_ui | D019715 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | blood |
| mesh[7].descriptor_name | Tissue Inhibitor of Metalloproteinase-1 |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D054360 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | Chemokine CXCL1 |
| mesh[9].qualifier_ui | Q000097 |
| mesh[9].descriptor_ui | D054360 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | blood |
| mesh[9].descriptor_name | Chemokine CXCL1 |
| mesh[10].qualifier_ui | Q000235 |
| mesh[10].descriptor_ui | D000683 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | genetics |
| mesh[10].descriptor_name | Serum Amyloid P-Component |
| mesh[11].qualifier_ui | Q000235 |
| mesh[11].descriptor_ui | D060066 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | genetics |
| mesh[11].descriptor_name | Protein Interaction Maps |
| mesh[12].qualifier_ui | Q000276 |
| mesh[12].descriptor_ui | D060066 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | immunology |
| mesh[12].descriptor_name | Protein Interaction Maps |
| mesh[13].qualifier_ui | Q000235 |
| mesh[13].descriptor_ui | D056747 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | genetics |
| mesh[13].descriptor_name | Immunomodulation |
| mesh[14].qualifier_ui | Q000235 |
| mesh[14].descriptor_ui | D002097 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | genetics |
| mesh[14].descriptor_name | C-Reactive Protein |
| mesh[15].qualifier_ui | Q000032 |
| mesh[15].descriptor_ui | D002097 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | analysis |
| mesh[15].descriptor_name | C-Reactive Protein |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D053263 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Gene Regulatory Networks |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D020869 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Gene Expression Profiling |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D008297 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Male |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D005260 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Female |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D049451 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Nomograms |
| mesh[22].qualifier_ui | Q000235 |
| mesh[22].descriptor_ui | D000784 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | genetics |
| mesh[22].descriptor_name | Aortic Dissection |
| mesh[23].qualifier_ui | Q000175 |
| mesh[23].descriptor_ui | D000784 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | diagnosis |
| mesh[23].descriptor_name | Aortic Dissection |
| mesh[24].qualifier_ui | Q000276 |
| mesh[24].descriptor_ui | D000784 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | immunology |
| mesh[24].descriptor_name | Aortic Dissection |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D000069550 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Machine Learning |
| mesh[26].qualifier_ui | Q000235 |
| mesh[26].descriptor_ui | D002097 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | genetics |
| mesh[26].descriptor_name | C-Reactive Protein |
| mesh[27].qualifier_ui | Q000235 |
| mesh[27].descriptor_ui | D019715 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | genetics |
| mesh[27].descriptor_name | Tissue Inhibitor of Metalloproteinase-1 |
| mesh[28].qualifier_ui | Q000276 |
| mesh[28].descriptor_ui | D060066 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | immunology |
| mesh[28].descriptor_name | Protein Interaction Maps |
| mesh[29].qualifier_ui | Q000235 |
| mesh[29].descriptor_ui | D060066 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | genetics |
| mesh[29].descriptor_name | Protein Interaction Maps |
| mesh[30].qualifier_ui | Q000235 |
| mesh[30].descriptor_ui | D000683 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | genetics |
| mesh[30].descriptor_name | Serum Amyloid P-Component |
| mesh[31].qualifier_ui | Q000235 |
| mesh[31].descriptor_ui | D054360 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | genetics |
| mesh[31].descriptor_name | Chemokine CXCL1 |
| mesh[32].qualifier_ui | Q000235 |
| mesh[32].descriptor_ui | D056747 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | genetics |
| mesh[32].descriptor_name | Immunomodulation |
| mesh[33].qualifier_ui | Q000276 |
| mesh[33].descriptor_ui | D053263 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | immunology |
| mesh[33].descriptor_name | Gene Regulatory Networks |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D020869 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Gene Expression Profiling |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D030541 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Databases, Genetic |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D008297 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Male |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D006801 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Humans |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D049451 |
| mesh[38].is_major_topic | True |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Nomograms |
| mesh[39].qualifier_ui | Q000235 |
| mesh[39].descriptor_ui | D000784 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | genetics |
| mesh[39].descriptor_name | Aortic Dissection |
| mesh[40].qualifier_ui | Q000276 |
| mesh[40].descriptor_ui | D000784 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | immunology |
| mesh[40].descriptor_name | Aortic Dissection |
| mesh[41].qualifier_ui | Q000175 |
| mesh[41].descriptor_ui | D000784 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | diagnosis |
| mesh[41].descriptor_name | Aortic Dissection |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D000069550 |
| mesh[42].is_major_topic | True |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Machine Learning |
| mesh[43].qualifier_ui | Q000235 |
| mesh[43].descriptor_ui | D019715 |
| mesh[43].is_major_topic | True |
| mesh[43].qualifier_name | genetics |
| mesh[43].descriptor_name | Tissue Inhibitor of Metalloproteinase-1 |
| mesh[44].qualifier_ui | Q000097 |
| mesh[44].descriptor_ui | D019715 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | blood |
| mesh[44].descriptor_name | Tissue Inhibitor of Metalloproteinase-1 |
| mesh[45].qualifier_ui | Q000235 |
| mesh[45].descriptor_ui | D054360 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | genetics |
| mesh[45].descriptor_name | Chemokine CXCL1 |
| mesh[46].qualifier_ui | Q000097 |
| mesh[46].descriptor_ui | D054360 |
| mesh[46].is_major_topic | True |
| mesh[46].qualifier_name | blood |
| mesh[46].descriptor_name | Chemokine CXCL1 |
| mesh[47].qualifier_ui | Q000235 |
| mesh[47].descriptor_ui | D000683 |
| mesh[47].is_major_topic | True |
| mesh[47].qualifier_name | genetics |
| mesh[47].descriptor_name | Serum Amyloid P-Component |
| mesh[48].qualifier_ui | Q000235 |
| mesh[48].descriptor_ui | D060066 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | genetics |
| mesh[48].descriptor_name | Protein Interaction Maps |
| mesh[49].qualifier_ui | Q000276 |
| mesh[49].descriptor_ui | D060066 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | immunology |
| mesh[49].descriptor_name | Protein Interaction Maps |
| type | article |
| title | Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessment |
| biblio.issue | 4 |
| biblio.volume | 22 |
| biblio.last_page | 886 |
| biblio.first_page | 873 |
| topics[0].id | https://openalex.org/T10983 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.8416000008583069 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Aortic aneurysm repair treatments |
| topics[1].id | https://openalex.org/T11055 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8116000294685364 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Cardiac and Coronary Surgery Techniques |
| topics[2].id | https://openalex.org/T10618 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.7591000199317932 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Aortic Disease and Treatment Approaches |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | AUD |
| apc_list.value_usd | 1337 |
| apc_paid.value | 2000 |
| apc_paid.currency | AUD |
| apc_paid.value_usd | 1337 |
| concepts[0].id | https://openalex.org/C34626388 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9251053929328918 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q721129 |
| concepts[0].display_name | Nomogram |
| concepts[1].id | https://openalex.org/C2779993142 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7824747562408447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q594660 |
| concepts[1].display_name | Aortic dissection |
| concepts[2].id | https://openalex.org/C8891405 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5966222882270813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1059 |
| concepts[2].display_name | Immune system |
| concepts[3].id | https://openalex.org/C104317684 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48835131525993347 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[3].display_name | Gene |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.48603707551956177 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C2775862295 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47098514437675476 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2660911 |
| concepts[5].display_name | Dissection (medical) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3985973298549652 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3953188359737396 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33774662017822266 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C70721500 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33418530225753784 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[9].display_name | Computational biology |
| concepts[10].id | https://openalex.org/C126838900 |
| concepts[10].level | 1 |
| concepts[10].score | 0.324166476726532 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[10].display_name | Radiology |
| concepts[11].id | https://openalex.org/C141071460 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3159605860710144 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q40821 |
| concepts[11].display_name | Surgery |
| concepts[12].id | https://openalex.org/C203014093 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3137299418449402 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q101929 |
| concepts[12].display_name | Immunology |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.24167779088020325 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.212683767080307 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C2779980429 |
| concepts[15].level | 2 |
| concepts[15].score | 0.12287113070487976 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q101004 |
| concepts[15].display_name | Aorta |
| concepts[16].id | https://openalex.org/C54355233 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1018456220626831 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[16].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/nomogram |
| keywords[0].score | 0.9251053929328918 |
| keywords[0].display_name | Nomogram |
| keywords[1].id | https://openalex.org/keywords/aortic-dissection |
| keywords[1].score | 0.7824747562408447 |
| keywords[1].display_name | Aortic dissection |
| keywords[2].id | https://openalex.org/keywords/immune-system |
| keywords[2].score | 0.5966222882270813 |
| keywords[2].display_name | Immune system |
| keywords[3].id | https://openalex.org/keywords/gene |
| keywords[3].score | 0.48835131525993347 |
| keywords[3].display_name | Gene |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.48603707551956177 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/dissection |
| keywords[5].score | 0.47098514437675476 |
| keywords[5].display_name | Dissection (medical) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3985973298549652 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.3953188359737396 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.33774662017822266 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/computational-biology |
| keywords[9].score | 0.33418530225753784 |
| keywords[9].display_name | Computational biology |
| keywords[10].id | https://openalex.org/keywords/radiology |
| keywords[10].score | 0.324166476726532 |
| keywords[10].display_name | Radiology |
| keywords[11].id | https://openalex.org/keywords/surgery |
| keywords[11].score | 0.3159605860710144 |
| keywords[11].display_name | Surgery |
| keywords[12].id | https://openalex.org/keywords/immunology |
| keywords[12].score | 0.3137299418449402 |
| keywords[12].display_name | Immunology |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.24167779088020325 |
| keywords[13].display_name | Internal medicine |
| keywords[14].id | https://openalex.org/keywords/biology |
| keywords[14].score | 0.212683767080307 |
| keywords[14].display_name | Biology |
| keywords[15].id | https://openalex.org/keywords/aorta |
| keywords[15].score | 0.12287113070487976 |
| keywords[15].display_name | Aorta |
| keywords[16].id | https://openalex.org/keywords/genetics |
| keywords[16].score | 0.1018456220626831 |
| keywords[16].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.7150/ijms.100572 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S46225466 |
| locations[0].source.issn | 1449-1907 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1449-1907 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Medical Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310317973 |
| locations[0].source.host_organization_name | Ivyspring International Publisher |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310317973 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Medical Sciences |
| locations[0].landing_page_url | https://doi.org/10.7150/ijms.100572 |
| locations[1].id | pmid:39991758 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International journal of medical sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39991758 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11843136 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Int J Med Sci |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11843136 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5103194911 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0370-8445 |
| authorships[0].author.display_name | Yanjun Hou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[0].institutions[0].id | https://openalex.org/I79731167 |
| authorships[0].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hainan Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yanjun Hou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[1].author.id | https://openalex.org/A5042305963 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5824-9162 |
| authorships[1].author.display_name | Yangyang Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[1].affiliations[0].raw_affiliation_string | Emergency and Trauma College, Hainan Medical University, Haikou 571199, China. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I79731167 |
| authorships[1].affiliations[1].raw_affiliation_string | Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| authorships[1].institutions[0].id | https://openalex.org/I79731167 |
| authorships[1].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hainan Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yangyang Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Emergency and Trauma College, Hainan Medical University, Haikou 571199, China., Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| authorships[2].author.id | https://openalex.org/A5057452430 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhensu Shi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[2].institutions[0].id | https://openalex.org/I79731167 |
| authorships[2].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hainan Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhensu Shi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[3].author.id | https://openalex.org/A5101093641 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yipeng Pan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Transplantation, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[3].institutions[0].id | https://openalex.org/I79731167 |
| authorships[3].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Hainan Medical University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yipeng Pan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Transplantation, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[4].author.id | https://openalex.org/A5002148775 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9286-2879 |
| authorships[4].author.display_name | Kaijia Shi |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| authorships[4].institutions[0].id | https://openalex.org/I79731167 |
| authorships[4].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Hainan Medical University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kaijia Shi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| authorships[5].author.id | https://openalex.org/A5106944119 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4752-1340 |
| authorships[5].author.display_name | Chaoyang Zhao |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[5].institutions[0].id | https://openalex.org/I79731167 |
| authorships[5].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hainan Medical University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chaoyang Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[6].author.id | https://openalex.org/A5101807325 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9886-068X |
| authorships[6].author.display_name | Shengnan Liu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[6].institutions[0].id | https://openalex.org/I79731167 |
| authorships[6].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Hainan Medical University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Shengnan Liu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[7].author.id | https://openalex.org/A5038033317 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0636-7770 |
| authorships[7].author.display_name | Yongkun Chen |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[7].institutions[0].id | https://openalex.org/I79731167 |
| authorships[7].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Hainan Medical University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yongkun Chen |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[8].author.id | https://openalex.org/A5109302781 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Lini Zhao |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Pharmacy, the Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China. |
| authorships[8].institutions[0].id | https://openalex.org/I79731167 |
| authorships[8].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Hainan Medical University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Lini Zhao |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Pharmacy, the Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China. |
| authorships[9].author.id | https://openalex.org/A5101811479 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Jizhen Wu |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Quality Control, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[9].institutions[0].id | https://openalex.org/I79731167 |
| authorships[9].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Hainan Medical University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Jizhen Wu |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Quality Control, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[10].author.id | https://openalex.org/A5057613123 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Guangquan Ge |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[10].institutions[0].id | https://openalex.org/I79731167 |
| authorships[10].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Hainan Medical University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Guangquan Ge |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Department of Cardiovascular Surgery, the Second Affiliated Hospital, Hainan Medical University, Haikou 570311, China. |
| authorships[11].author.id | https://openalex.org/A5100626075 |
| authorships[11].author.orcid | https://orcid.org/0009-0007-1150-2312 |
| authorships[11].author.display_name | Jie Wei |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I79731167 |
| authorships[11].affiliations[0].raw_affiliation_string | Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| authorships[11].institutions[0].id | https://openalex.org/I79731167 |
| authorships[11].institutions[0].ror | https://ror.org/004eeze55 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I79731167 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | Hainan Medical University |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Wei Jie |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Key Laboratory of Tropical Translational Medicine of Ministry of Education & Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, School of Public Health, Hainan Medical University, Haikou 571199, China. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7150/ijms.100572 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Establishment of a nomogram model based on immune-related genes using machine learning for aortic dissection diagnosis and immunomodulation assessment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10983 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.8416000008583069 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Aortic aneurysm repair treatments |
| related_works | https://openalex.org/W2911441101, https://openalex.org/W1970018641, https://openalex.org/W1993821226, https://openalex.org/W2063908487, https://openalex.org/W3014240535, https://openalex.org/W4226494765, https://openalex.org/W2004029742, https://openalex.org/W4233588653, https://openalex.org/W1999313618, https://openalex.org/W2089138782 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.7150/ijms.100572 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S46225466 |
| best_oa_location.source.issn | 1449-1907 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1449-1907 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Medical Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310317973 |
| best_oa_location.source.host_organization_name | Ivyspring International Publisher |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310317973 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Medical Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.7150/ijms.100572 |
| primary_location.id | doi:10.7150/ijms.100572 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S46225466 |
| primary_location.source.issn | 1449-1907 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1449-1907 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Medical Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310317973 |
| primary_location.source.host_organization_name | Ivyspring International Publisher |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310317973 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Medical Sciences |
| primary_location.landing_page_url | https://doi.org/10.7150/ijms.100572 |
| publication_date | 2025-01-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.T | 160, 163, 167 |
| abstract_inverted_index.a | 27 |
| abstract_inverted_index.15 | 62 |
| abstract_inverted_index.AD | 31, 117, 185, 219 |
| abstract_inverted_index.NK | 146 |
| abstract_inverted_index.be | 112, 182, 233 |
| abstract_inverted_index.by | 67 |
| abstract_inverted_index.in | 114, 173, 184, 217 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.of | 3, 45 |
| abstract_inverted_index.on | 105 |
| abstract_inverted_index.to | 21, 25, 111, 181 |
| abstract_inverted_index.136 | 56 |
| abstract_inverted_index.AD. | 174, 237 |
| abstract_inverted_index.CD4 | 159 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 9, 38, 41, 55, 80, 87, 99, 119, 125, 169, 188, 211, 220, 223 |
| abstract_inverted_index.are | 141 |
| abstract_inverted_index.for | 15, 30, 43, 236 |
| abstract_inverted_index.hub | 230 |
| abstract_inverted_index.key | 92 |
| abstract_inverted_index.may | 232 |
| abstract_inverted_index.the | 68, 76, 101 |
| abstract_inverted_index.(AD) | 6 |
| abstract_inverted_index.This | 18 |
| abstract_inverted_index.four | 91, 107, 177, 205 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.gene | 51 |
| abstract_inverted_index.mast | 149, 152 |
| abstract_inverted_index.that | 138, 197 |
| abstract_inverted_index.this | 129, 198 |
| abstract_inverted_index.used | 42 |
| abstract_inverted_index.were | 59, 65, 95, 109, 179 |
| abstract_inverted_index.with | 143, 192, 228 |
| abstract_inverted_index.γδ | 162 |
| abstract_inverted_index.Least | 77 |
| abstract_inverted_index.Then, | 61 |
| abstract_inverted_index.These | 194 |
| abstract_inverted_index.Three | 33 |
| abstract_inverted_index.aimed | 20 |
| abstract_inverted_index.based | 104 |
| abstract_inverted_index.cells | 172, 225 |
| abstract_inverted_index.early | 12 |
| abstract_inverted_index.genes | 48, 58, 64, 94, 108, 140, 178, 207, 231 |
| abstract_inverted_index.model | 29 |
| abstract_inverted_index.serum | 189 |
| abstract_inverted_index.study | 19 |
| abstract_inverted_index.these | 106, 139, 176, 229 |
| abstract_inverted_index.using | 49, 201 |
| abstract_inverted_index.aortic | 4 |
| abstract_inverted_index.cells, | 147, 150, 153, 156, 161, 164, 168 |
| abstract_inverted_index.forest | 85 |
| abstract_inverted_index.immune | 224 |
| abstract_inverted_index.killer | 166 |
| abstract_inverted_index.making | 11 |
| abstract_inverted_index.memory | 158 |
| abstract_inverted_index.model, | 200 |
| abstract_inverted_index.proved | 110 |
| abstract_inverted_index.random | 84 |
| abstract_inverted_index.scores | 103 |
| abstract_inverted_index.strong | 132 |
| abstract_inverted_index.tissue | 187 |
| abstract_inverted_index.Further | 135 |
| abstract_inverted_index.Through | 72 |
| abstract_inverted_index.ability | 216 |
| abstract_inverted_index.between | 116 |
| abstract_inverted_index.central | 157 |
| abstract_inverted_index.complex | 8 |
| abstract_inverted_index.crucial | 14 |
| abstract_inverted_index.dataset | 123 |
| abstract_inverted_index.donors. | 121 |
| abstract_inverted_index.feature | 93 |
| abstract_inverted_index.healthy | 120, 221 |
| abstract_inverted_index.machine | 73, 202 |
| abstract_inverted_index.markers | 24 |
| abstract_inverted_index.natural | 165 |
| abstract_inverted_index.network | 53 |
| abstract_inverted_index.patient | 16 |
| abstract_inverted_index.pivotal | 63 |
| abstract_inverted_index.related | 142 |
| abstract_inverted_index.resting | 145, 148 |
| abstract_inverted_index.results | 195 |
| abstract_inverted_index.samples | 190 |
| abstract_inverted_index.suggest | 196 |
| abstract_inverted_index.targets | 235 |
| abstract_inverted_index.varied, | 10 |
| abstract_inverted_index.Absolute | 78 |
| abstract_inverted_index.External | 122 |
| abstract_inverted_index.Finally, | 175 |
| abstract_inverted_index.Operator | 82 |
| abstract_inverted_index.analysis | 136 |
| abstract_inverted_index.clinical | 1 |
| abstract_inverted_index.combined | 40 |
| abstract_inverted_index.commonly | 226 |
| abstract_inverted_index.compared | 191 |
| abstract_inverted_index.datasets | 34 |
| abstract_inverted_index.displays | 213 |
| abstract_inverted_index.identify | 22 |
| abstract_inverted_index.learning | 74, 203 |
| abstract_inverted_index.logistic | 89 |
| abstract_inverted_index.network. | 71 |
| abstract_inverted_index.nomogram | 28, 130, 199 |
| abstract_inverted_index.patients | 118 |
| abstract_inverted_index.revealed | 128, 137 |
| abstract_inverted_index.screened | 66 |
| abstract_inverted_index.superior | 214 |
| abstract_inverted_index.weighted | 50 |
| abstract_inverted_index.(GSE98770 | 124 |
| abstract_inverted_index.GSE147026 | 37 |
| abstract_inverted_index.Selection | 81 |
| abstract_inverted_index.Shrinkage | 79 |
| abstract_inverted_index.activated | 151, 154 |
| abstract_inverted_index.analysis, | 54 |
| abstract_inverted_index.causative | 47 |
| abstract_inverted_index.controls. | 193 |
| abstract_inverted_index.dendritic | 155 |
| abstract_inverted_index.diagnosis | 13 |
| abstract_inverted_index.displayed | 131 |
| abstract_inverted_index.effective | 113 |
| abstract_inverted_index.establish | 26 |
| abstract_inverted_index.including | 75 |
| abstract_inverted_index.obtained. | 60 |
| abstract_inverted_index.patients' | 186 |
| abstract_inverted_index.survival. | 17 |
| abstract_inverted_index.validated | 180 |
| abstract_inverted_index.GSE190635) | 126 |
| abstract_inverted_index.algorithm, | 83, 86 |
| abstract_inverted_index.associated | 227 |
| abstract_inverted_index.diagnosis. | 32 |
| abstract_inverted_index.diagnostic | 102, 215 |
| abstract_inverted_index.dissection | 5 |
| abstract_inverted_index.identified | 204 |
| abstract_inverted_index.predictive | 133 |
| abstract_inverted_index.suppressor | 171 |
| abstract_inverted_index.validation | 127 |
| abstract_inverted_index.interaction | 70 |
| abstract_inverted_index.regression, | 90 |
| abstract_inverted_index.therapeutic | 234 |
| abstract_inverted_index.upregulated | 183 |
| abstract_inverted_index.<i>PTX3</i>, | 98, 210 |
| abstract_inverted_index.individuals, | 222 |
| abstract_inverted_index.multivariate | 88 |
| abstract_inverted_index.neutrophils, | 144 |
| abstract_inverted_index.<i>CXCL1</i>, | 208 |
| abstract_inverted_index.<i>ITGA5</i>, | 97, 209 |
| abstract_inverted_index.<i>TIMP1</i>, | 212 |
| abstract_inverted_index.GEO-GSE52093, | 36 |
| abstract_inverted_index.co-expression | 52 |
| abstract_inverted_index.manifestation | 2 |
| abstract_inverted_index.significance. | 134 |
| abstract_inverted_index.GSE153434-were | 39 |
| abstract_inverted_index.distinguishing | 115, 218 |
| abstract_inverted_index.identification | 44 |
| abstract_inverted_index.immune-related | 23, 46, 57, 206 |
| abstract_inverted_index.myeloid-derived | 170 |
| abstract_inverted_index.protein-protein | 69 |
| abstract_inverted_index.<i>TIMP1</i>-and | 100 |
| abstract_inverted_index.obtained-<i>CXCL1</i>, | 96 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.8269401 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |