Estimating and Assessing Differential Equation Models with Time-Course Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1021/acs.jpcb.2c08932
Ordinary differential equation (ODE) models are widely used to describe chemical or biological processes. This Article considers the estimation and assessment of such models on the basis of time-course data. Due to experimental limitations, time-course data are often noisy, and some components of the system may not be observed. Furthermore, the computational demands of numerical integration have hindered the widespread adoption of time-course analysis using ODEs. To address these challenges, we explore the efficacy of the recently developed MAGI (MAnifold-constrained Gaussian process Inference) method for ODE inference. First, via a range of examples we show that MAGI is capable of inferring the parameters and system trajectories, including unobserved components, with appropriate uncertainty quantification. Second, we illustrate how MAGI can be used to assess and select different ODE models with time-course data based on MAGI's efficient computation of model predictions. Overall, we believe MAGI is a useful method for the analysis of time-course data in the context of ODE models, which bypasses the need for any numerical integration.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1021/acs.jpcb.2c08932
- OA Status
- green
- Cited By
- 4
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4323657381
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4323657381Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1021/acs.jpcb.2c08932Digital Object Identifier
- Title
-
Estimating and Assessing Differential Equation Models with Time-Course DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-09Full publication date if available
- Authors
-
Samuel W. K. Wong, Shihao Yang, S. C. KouList of authors in order
- Landing page
-
https://doi.org/10.1021/acs.jpcb.2c08932Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10041644/pdf/jp2c08932.pdfDirect OA link when available
- Concepts
-
Ode, Ordinary differential equation, Inference, Context (archaeology), Computer science, Computation, Range (aeronautics), Numerical integration, Process (computing), Gaussian process, Algorithm, Applied mathematics, Differential equation, Mathematics, Gaussian, Artificial intelligence, Composite material, Paleontology, Operating system, Biology, Mathematical analysis, Physics, Materials science, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4323657381 |
|---|---|
| doi | https://doi.org/10.1021/acs.jpcb.2c08932 |
| ids.doi | https://doi.org/10.1021/acs.jpcb.2c08932 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36893480 |
| ids.openalex | https://openalex.org/W4323657381 |
| fwci | 0.74268163 |
| type | article |
| title | Estimating and Assessing Differential Equation Models with Time-Course Data |
| biblio.issue | 11 |
| biblio.volume | 127 |
| biblio.last_page | 2374 |
| biblio.first_page | 2362 |
| grants[0].funder | https://openalex.org/F4320334593 |
| grants[0].award_id | RGPIN-2019-04771 |
| grants[0].funder_display_name | Natural Sciences and Engineering Research Council of Canada |
| topics[0].id | https://openalex.org/T10621 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9718999862670898 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene Regulatory Network Analysis |
| topics[1].id | https://openalex.org/T10932 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.970300018787384 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Microbial Metabolic Engineering and Bioproduction |
| topics[2].id | https://openalex.org/T11663 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9162999987602234 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Viral Infectious Diseases and Gene Expression in Insects |
| funders[0].id | https://openalex.org/F4320334593 |
| funders[0].ror | https://ror.org/01h531d29 |
| funders[0].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C34862557 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9319126009941101 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q178985 |
| concepts[0].display_name | Ode |
| concepts[1].id | https://openalex.org/C51544822 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7160631418228149 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q465274 |
| concepts[1].display_name | Ordinary differential equation |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6621801853179932 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C2779343474 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6127243041992188 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[3].display_name | Context (archaeology) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6033331155776978 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C45374587 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5285296440124512 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[5].display_name | Computation |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48119813203811646 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C127349201 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42757317423820496 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q753445 |
| concepts[7].display_name | Numerical integration |
| concepts[8].id | https://openalex.org/C98045186 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4183666706085205 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[8].display_name | Process (computing) |
| concepts[9].id | https://openalex.org/C61326573 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4104588031768799 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1496376 |
| concepts[9].display_name | Gaussian process |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39548230171203613 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C28826006 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3929588496685028 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[11].display_name | Applied mathematics |
| concepts[12].id | https://openalex.org/C78045399 |
| concepts[12].level | 2 |
| concepts[12].score | 0.36418864130973816 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[12].display_name | Differential equation |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.29184597730636597 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C163716315 |
| concepts[14].level | 2 |
| concepts[14].score | 0.24289384484291077 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[14].display_name | Gaussian |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.210363507270813 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C134306372 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[20].display_name | Mathematical analysis |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C192562407 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[22].display_name | Materials science |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/ode |
| keywords[0].score | 0.9319126009941101 |
| keywords[0].display_name | Ode |
| keywords[1].id | https://openalex.org/keywords/ordinary-differential-equation |
| keywords[1].score | 0.7160631418228149 |
| keywords[1].display_name | Ordinary differential equation |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.6621801853179932 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/context |
| keywords[3].score | 0.6127243041992188 |
| keywords[3].display_name | Context (archaeology) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6033331155776978 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computation |
| keywords[5].score | 0.5285296440124512 |
| keywords[5].display_name | Computation |
| keywords[6].id | https://openalex.org/keywords/range |
| keywords[6].score | 0.48119813203811646 |
| keywords[6].display_name | Range (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/numerical-integration |
| keywords[7].score | 0.42757317423820496 |
| keywords[7].display_name | Numerical integration |
| keywords[8].id | https://openalex.org/keywords/process |
| keywords[8].score | 0.4183666706085205 |
| keywords[8].display_name | Process (computing) |
| keywords[9].id | https://openalex.org/keywords/gaussian-process |
| keywords[9].score | 0.4104588031768799 |
| keywords[9].display_name | Gaussian process |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.39548230171203613 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/applied-mathematics |
| keywords[11].score | 0.3929588496685028 |
| keywords[11].display_name | Applied mathematics |
| keywords[12].id | https://openalex.org/keywords/differential-equation |
| keywords[12].score | 0.36418864130973816 |
| keywords[12].display_name | Differential equation |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.29184597730636597 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/gaussian |
| keywords[14].score | 0.24289384484291077 |
| keywords[14].display_name | Gaussian |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.210363507270813 |
| keywords[15].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1021/acs.jpcb.2c08932 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S185621672 |
| locations[0].source.issn | 1520-5207, 1520-6106 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1520-5207 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | The Journal of Physical Chemistry B |
| locations[0].source.host_organization | https://openalex.org/P4310320006 |
| locations[0].source.host_organization_name | American Chemical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320006 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Journal of Physical Chemistry B |
| locations[0].landing_page_url | https://doi.org/10.1021/acs.jpcb.2c08932 |
| locations[1].id | pmid:36893480 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | The journal of physical chemistry. B |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36893480 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10041644 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10041644/pdf/jp2c08932.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Phys Chem B |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10041644 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5026713161 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7325-7267 |
| authorships[0].author.display_name | Samuel W. K. Wong |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I151746483 |
| authorships[0].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Waterloo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Samuel W. K. Wong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada |
| authorships[1].author.id | https://openalex.org/A5057260690 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3910-4969 |
| authorships[1].author.display_name | Shihao Yang |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130701444 |
| authorships[1].affiliations[0].raw_affiliation_string | H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States |
| authorships[1].institutions[0].id | https://openalex.org/I130701444 |
| authorships[1].institutions[0].ror | https://ror.org/01zkghx44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130701444 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Georgia Institute of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shihao Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States |
| authorships[2].author.id | https://openalex.org/A5036268166 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1774-3316 |
| authorships[2].author.display_name | S. C. Kou |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, United States |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | S. C. Kou |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Statistics, Harvard University, Cambridge, Massachusetts 02138, United States |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10041644/pdf/jp2c08932.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating and Assessing Differential Equation Models with Time-Course Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10621 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9718999862670898 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene Regulatory Network Analysis |
| related_works | https://openalex.org/W3082668976, https://openalex.org/W2517973022, https://openalex.org/W1543121148, https://openalex.org/W1580703421, https://openalex.org/W2996841952, https://openalex.org/W2618518959, https://openalex.org/W2231364979, https://openalex.org/W4295745414, https://openalex.org/W4288093367, https://openalex.org/W4382202915 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10041644 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10041644/pdf/jp2c08932.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Phys Chem B |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10041644 |
| primary_location.id | doi:10.1021/acs.jpcb.2c08932 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S185621672 |
| primary_location.source.issn | 1520-5207, 1520-6106 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1520-5207 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | The Journal of Physical Chemistry B |
| primary_location.source.host_organization | https://openalex.org/P4310320006 |
| primary_location.source.host_organization_name | American Chemical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320006 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Journal of Physical Chemistry B |
| primary_location.landing_page_url | https://doi.org/10.1021/acs.jpcb.2c08932 |
| publication_date | 2023-03-09 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2166082940, https://openalex.org/W1563322259, https://openalex.org/W4229687621, https://openalex.org/W2148457628, https://openalex.org/W2150614072, https://openalex.org/W2064977507, https://openalex.org/W2011238217, https://openalex.org/W2605512081, https://openalex.org/W4297093998, https://openalex.org/W1853272306, https://openalex.org/W2072306011, https://openalex.org/W2033695143, https://openalex.org/W2121901998, https://openalex.org/W1996308898, https://openalex.org/W1997057704, https://openalex.org/W2009420996, https://openalex.org/W3009370296, https://openalex.org/W2114176419, https://openalex.org/W3143384983, https://openalex.org/W1645305843, https://openalex.org/W2171280873, https://openalex.org/W2016097940, https://openalex.org/W2093828424, https://openalex.org/W2525748878, https://openalex.org/W2573798107, https://openalex.org/W2980165006, https://openalex.org/W2951629468, https://openalex.org/W2576134309, https://openalex.org/W2899283552, https://openalex.org/W3202433620, https://openalex.org/W3010849941, https://openalex.org/W4309548460, https://openalex.org/W2770250658, https://openalex.org/W2077255563, https://openalex.org/W2950586838, https://openalex.org/W4280528248, https://openalex.org/W2054979333, https://openalex.org/W2142337964, https://openalex.org/W2117321459, https://openalex.org/W2040391135, https://openalex.org/W2148362226, https://openalex.org/W2155748850, https://openalex.org/W2165430487, https://openalex.org/W2056449173, https://openalex.org/W2045637398, https://openalex.org/W2100416355, https://openalex.org/W4242441490, https://openalex.org/W2004801113, https://openalex.org/W2103029515, https://openalex.org/W2167746224, https://openalex.org/W2052796757, https://openalex.org/W3086251959, https://openalex.org/W2125141817, https://openalex.org/W1885778179, https://openalex.org/W2340940993, https://openalex.org/W2125149319, https://openalex.org/W1550805286, https://openalex.org/W1984850614, https://openalex.org/W2067763402, https://openalex.org/W4232516514, https://openalex.org/W1509409912, https://openalex.org/W2092173086, https://openalex.org/W2102787760, https://openalex.org/W3084240815, https://openalex.org/W4211049957, https://openalex.org/W2327883350, https://openalex.org/W2990138404, https://openalex.org/W2775548182, https://openalex.org/W4205814206 |
| referenced_works_count | 69 |
| abstract_inverted_index.a | 89, 144 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.be | 47, 119 |
| abstract_inverted_index.in | 153 |
| abstract_inverted_index.is | 97, 143 |
| abstract_inverted_index.of | 21, 27, 42, 53, 61, 74, 91, 99, 136, 150, 156 |
| abstract_inverted_index.on | 24, 132 |
| abstract_inverted_index.or | 11 |
| abstract_inverted_index.to | 8, 31, 121 |
| abstract_inverted_index.we | 70, 93, 114, 140 |
| abstract_inverted_index.Due | 30 |
| abstract_inverted_index.ODE | 85, 126, 157 |
| abstract_inverted_index.and | 19, 39, 103, 123 |
| abstract_inverted_index.any | 164 |
| abstract_inverted_index.are | 5, 36 |
| abstract_inverted_index.can | 118 |
| abstract_inverted_index.for | 84, 147, 163 |
| abstract_inverted_index.how | 116 |
| abstract_inverted_index.may | 45 |
| abstract_inverted_index.not | 46 |
| abstract_inverted_index.the | 17, 25, 43, 50, 58, 72, 75, 101, 148, 154, 161 |
| abstract_inverted_index.via | 88 |
| abstract_inverted_index.MAGI | 78, 96, 117, 142 |
| abstract_inverted_index.This | 14 |
| abstract_inverted_index.data | 35, 130, 152 |
| abstract_inverted_index.have | 56 |
| abstract_inverted_index.need | 162 |
| abstract_inverted_index.show | 94 |
| abstract_inverted_index.some | 40 |
| abstract_inverted_index.such | 22 |
| abstract_inverted_index.that | 95 |
| abstract_inverted_index.used | 7, 120 |
| abstract_inverted_index.with | 109, 128 |
| abstract_inverted_index.(ODE) | 3 |
| abstract_inverted_index.ODEs. | 65 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.basis | 26 |
| abstract_inverted_index.data. | 29 |
| abstract_inverted_index.model | 137 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.range | 90 |
| abstract_inverted_index.these | 68 |
| abstract_inverted_index.using | 64 |
| abstract_inverted_index.which | 159 |
| abstract_inverted_index.First, | 87 |
| abstract_inverted_index.MAGI's | 133 |
| abstract_inverted_index.assess | 122 |
| abstract_inverted_index.method | 83, 146 |
| abstract_inverted_index.models | 4, 23, 127 |
| abstract_inverted_index.noisy, | 38 |
| abstract_inverted_index.select | 124 |
| abstract_inverted_index.system | 44, 104 |
| abstract_inverted_index.useful | 145 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.Article | 15 |
| abstract_inverted_index.Second, | 113 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.believe | 141 |
| abstract_inverted_index.capable | 98 |
| abstract_inverted_index.context | 155 |
| abstract_inverted_index.demands | 52 |
| abstract_inverted_index.explore | 71 |
| abstract_inverted_index.models, | 158 |
| abstract_inverted_index.process | 81 |
| abstract_inverted_index.Gaussian | 80 |
| abstract_inverted_index.Ordinary | 0 |
| abstract_inverted_index.Overall, | 139 |
| abstract_inverted_index.adoption | 60 |
| abstract_inverted_index.analysis | 63, 149 |
| abstract_inverted_index.bypasses | 160 |
| abstract_inverted_index.chemical | 10 |
| abstract_inverted_index.describe | 9 |
| abstract_inverted_index.efficacy | 73 |
| abstract_inverted_index.equation | 2 |
| abstract_inverted_index.examples | 92 |
| abstract_inverted_index.hindered | 57 |
| abstract_inverted_index.recently | 76 |
| abstract_inverted_index.considers | 16 |
| abstract_inverted_index.developed | 77 |
| abstract_inverted_index.different | 125 |
| abstract_inverted_index.efficient | 134 |
| abstract_inverted_index.including | 106 |
| abstract_inverted_index.inferring | 100 |
| abstract_inverted_index.numerical | 54, 165 |
| abstract_inverted_index.observed. | 48 |
| abstract_inverted_index.Inference) | 82 |
| abstract_inverted_index.assessment | 20 |
| abstract_inverted_index.biological | 12 |
| abstract_inverted_index.components | 41 |
| abstract_inverted_index.estimation | 18 |
| abstract_inverted_index.illustrate | 115 |
| abstract_inverted_index.inference. | 86 |
| abstract_inverted_index.parameters | 102 |
| abstract_inverted_index.processes. | 13 |
| abstract_inverted_index.unobserved | 107 |
| abstract_inverted_index.widespread | 59 |
| abstract_inverted_index.appropriate | 110 |
| abstract_inverted_index.challenges, | 69 |
| abstract_inverted_index.components, | 108 |
| abstract_inverted_index.computation | 135 |
| abstract_inverted_index.integration | 55 |
| abstract_inverted_index.time-course | 28, 34, 62, 129, 151 |
| abstract_inverted_index.uncertainty | 111 |
| abstract_inverted_index.Furthermore, | 49 |
| abstract_inverted_index.differential | 1 |
| abstract_inverted_index.experimental | 32 |
| abstract_inverted_index.integration. | 166 |
| abstract_inverted_index.limitations, | 33 |
| abstract_inverted_index.predictions. | 138 |
| abstract_inverted_index.computational | 51 |
| abstract_inverted_index.trajectories, | 105 |
| abstract_inverted_index.quantification. | 112 |
| abstract_inverted_index.(MAnifold-constrained | 79 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5036268166 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I136199984 |
| citation_normalized_percentile.value | 0.71533521 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |