Estimating Boltzmann Averages for Protein Structural Quantities Using Sequential Monte Carlo Article Swipe
Zhaoran Hou
,
Samuel W. K. Wong
·
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5705/ss.202022.0340
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5705/ss.202022.0340
Sequential Monte Carlo (SMC) methods are widely used to draw samples from intractable target distributions.Weight degeneracy can hinder the use of SMC when the target distribution is highly constrained.As a motivating application, we consider the problem of sampling protein structures from the Boltzmann distribution.This paper proposes a general SMC method that propagates multiple descendants for each particle, followed by resampling to maintain the desired number of particles.A simulation study demonstrates the efficacy of the method for tackling the protein sampling problem, compared to existing SMC methods.As a real data example, we estimate the number of atomic contacts for a key segment of the SARS-CoV-2 viral spike protein.
Related Topics
Concepts
Monte Carlo method
Statistical physics
Boltzmann constant
Monte Carlo molecular modeling
Mathematics
Applied mathematics
Computer science
Markov chain Monte Carlo
Statistics
Physics
Thermodynamics
Metadata
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.5705/ss.202022.0340
- https://doi.org/10.5705/ss.202022.0340
- OA Status
- bronze
- References
- 64
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4388442861
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4388442861Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5705/ss.202022.0340Digital Object Identifier
- Title
-
Estimating Boltzmann Averages for Protein Structural Quantities Using Sequential Monte CarloWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-11-07Full publication date if available
- Authors
-
Zhaoran Hou, Samuel W. K. WongList of authors in order
- Landing page
-
https://doi.org/10.5705/ss.202022.0340Publisher landing page
- PDF URL
-
https://doi.org/10.5705/ss.202022.0340Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5705/ss.202022.0340Direct OA link when available
- Concepts
-
Monte Carlo method, Statistical physics, Boltzmann constant, Monte Carlo molecular modeling, Mathematics, Applied mathematics, Computer science, Markov chain Monte Carlo, Statistics, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
64Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4388442861 |
|---|---|
| doi | https://doi.org/10.5705/ss.202022.0340 |
| ids.doi | https://doi.org/10.5705/ss.202022.0340 |
| ids.openalex | https://openalex.org/W4388442861 |
| fwci | 0.0 |
| type | article |
| title | Estimating Boltzmann Averages for Protein Structural Quantities Using Sequential Monte Carlo |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9761000275611877 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T10044 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9674999713897705 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Protein Structure and Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C19499675 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7488989233970642 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[0].display_name | Monte Carlo method |
| concepts[1].id | https://openalex.org/C121864883 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6578168869018555 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[1].display_name | Statistical physics |
| concepts[2].id | https://openalex.org/C35304006 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4533393681049347 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5962 |
| concepts[2].display_name | Boltzmann constant |
| concepts[3].id | https://openalex.org/C37669827 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4108680188655853 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6904703 |
| concepts[3].display_name | Monte Carlo molecular modeling |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.39342257380485535 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C28826006 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3800792098045349 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[5].display_name | Applied mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3526858687400818 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C111350023 |
| concepts[7].level | 3 |
| concepts[7].score | 0.3281458020210266 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1191869 |
| concepts[7].display_name | Markov chain Monte Carlo |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2163633108139038 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20027723908424377 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C97355855 |
| concepts[10].level | 1 |
| concepts[10].score | 0.1313704550266266 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[10].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[0].score | 0.7488989233970642 |
| keywords[0].display_name | Monte Carlo method |
| keywords[1].id | https://openalex.org/keywords/statistical-physics |
| keywords[1].score | 0.6578168869018555 |
| keywords[1].display_name | Statistical physics |
| keywords[2].id | https://openalex.org/keywords/boltzmann-constant |
| keywords[2].score | 0.4533393681049347 |
| keywords[2].display_name | Boltzmann constant |
| keywords[3].id | https://openalex.org/keywords/monte-carlo-molecular-modeling |
| keywords[3].score | 0.4108680188655853 |
| keywords[3].display_name | Monte Carlo molecular modeling |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.39342257380485535 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/applied-mathematics |
| keywords[5].score | 0.3800792098045349 |
| keywords[5].display_name | Applied mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3526858687400818 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/markov-chain-monte-carlo |
| keywords[7].score | 0.3281458020210266 |
| keywords[7].display_name | Markov chain Monte Carlo |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.2163633108139038 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.20027723908424377 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/thermodynamics |
| keywords[10].score | 0.1313704550266266 |
| keywords[10].display_name | Thermodynamics |
| language | en |
| locations[0].id | doi:10.5705/ss.202022.0340 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S23408671 |
| locations[0].source.issn | 1017-0405, 1996-8507 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1017-0405 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Statistica Sinica |
| locations[0].source.host_organization | https://openalex.org/P4362561675 |
| locations[0].source.host_organization_name | Institute of Statistical Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4362561675 |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5705/ss.202022.0340 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Statistica Sinica |
| locations[0].landing_page_url | http://doi.org/10.5705/ss.202022.0340 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005238424 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhaoran Hou |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Waterloo |
| authorships[0].institutions[0].id | https://openalex.org/I151746483 |
| authorships[0].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Waterloo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhaoran Hou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Waterloo |
| authorships[1].author.id | https://openalex.org/A5026713161 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7325-7267 |
| authorships[1].author.display_name | Samuel W. K. Wong |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Waterloo |
| authorships[1].institutions[0].id | https://openalex.org/I151746483 |
| authorships[1].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | University of Waterloo |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Samuel W.K. Wong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | University of Waterloo |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5705/ss.202022.0340 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating Boltzmann Averages for Protein Structural Quantities Using Sequential Monte Carlo |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9761000275611877 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W78272879, https://openalex.org/W2067032644, https://openalex.org/W4294677683, https://openalex.org/W48925535, https://openalex.org/W1567311013, https://openalex.org/W2347805689, https://openalex.org/W1993475310, https://openalex.org/W2364466961, https://openalex.org/W2075861795, https://openalex.org/W2005266888 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5705/ss.202022.0340 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S23408671 |
| best_oa_location.source.issn | 1017-0405, 1996-8507 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1017-0405 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Statistica Sinica |
| best_oa_location.source.host_organization | https://openalex.org/P4362561675 |
| best_oa_location.source.host_organization_name | Institute of Statistical Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4362561675 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5705/ss.202022.0340 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Statistica Sinica |
| best_oa_location.landing_page_url | http://doi.org/10.5705/ss.202022.0340 |
| primary_location.id | doi:10.5705/ss.202022.0340 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S23408671 |
| primary_location.source.issn | 1017-0405, 1996-8507 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1017-0405 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Statistica Sinica |
| primary_location.source.host_organization | https://openalex.org/P4362561675 |
| primary_location.source.host_organization_name | Institute of Statistical Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4362561675 |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5705/ss.202022.0340 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Statistica Sinica |
| primary_location.landing_page_url | http://doi.org/10.5705/ss.202022.0340 |
| publication_date | 2023-11-07 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1978159078, https://openalex.org/W3034953313, https://openalex.org/W6630069152, https://openalex.org/W2045777307, https://openalex.org/W6631828510, https://openalex.org/W35601271, https://openalex.org/W1513172823, https://openalex.org/W6658749363, https://openalex.org/W6668617433, https://openalex.org/W6655749763, https://openalex.org/W2152159624, https://openalex.org/W3001456238, https://openalex.org/W6785544822, https://openalex.org/W6781468348, https://openalex.org/W3047616897, https://openalex.org/W2108101947, https://openalex.org/W6603883703, https://openalex.org/W2064119066, https://openalex.org/W2160903751, https://openalex.org/W2087432921, https://openalex.org/W2098613108, https://openalex.org/W2046357557, https://openalex.org/W1982370455, https://openalex.org/W6675818448, https://openalex.org/W2077611006, https://openalex.org/W3014067025, https://openalex.org/W3014869840, https://openalex.org/W6664636082, https://openalex.org/W6668080254, https://openalex.org/W6671537891, https://openalex.org/W6666440452, https://openalex.org/W1963828038, https://openalex.org/W6697285969, https://openalex.org/W2158476854, https://openalex.org/W2138104170, https://openalex.org/W2154106236, https://openalex.org/W2810140685, https://openalex.org/W2892117196, https://openalex.org/W3005605085, https://openalex.org/W2131046967, https://openalex.org/W2093869301, https://openalex.org/W3102824770, https://openalex.org/W2089657469, https://openalex.org/W3044820246, https://openalex.org/W4230472026, https://openalex.org/W2082542916, https://openalex.org/W4231786831, https://openalex.org/W2071988465, https://openalex.org/W4235804341, https://openalex.org/W2147357149, https://openalex.org/W4229936004, https://openalex.org/W1501586228, https://openalex.org/W2022023686, https://openalex.org/W3121154744, https://openalex.org/W2055654935, https://openalex.org/W95577512, https://openalex.org/W4241181106, https://openalex.org/W2294861638, https://openalex.org/W4388063146, https://openalex.org/W2104858427, https://openalex.org/W2951165448, https://openalex.org/W3045724626, https://openalex.org/W2963804890, https://openalex.org/W3126501453 |
| referenced_works_count | 64 |
| abstract_inverted_index.a | 29, 46, 86, 98 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.is | 26 |
| abstract_inverted_index.of | 20, 36, 65, 72, 94, 101 |
| abstract_inverted_index.to | 8, 60, 82 |
| abstract_inverted_index.we | 32, 90 |
| abstract_inverted_index.SMC | 21, 48, 84 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 16 |
| abstract_inverted_index.for | 54, 75, 97 |
| abstract_inverted_index.key | 99 |
| abstract_inverted_index.the | 18, 23, 34, 41, 62, 70, 73, 77, 92, 102 |
| abstract_inverted_index.use | 19 |
| abstract_inverted_index.data | 88 |
| abstract_inverted_index.draw | 9 |
| abstract_inverted_index.each | 55 |
| abstract_inverted_index.from | 11, 40 |
| abstract_inverted_index.real | 87 |
| abstract_inverted_index.that | 50 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.when | 22 |
| abstract_inverted_index.(SMC) | 3 |
| abstract_inverted_index.Carlo | 2 |
| abstract_inverted_index.Monte | 1 |
| abstract_inverted_index.paper | 44 |
| abstract_inverted_index.spike | 105 |
| abstract_inverted_index.study | 68 |
| abstract_inverted_index.viral | 104 |
| abstract_inverted_index.atomic | 95 |
| abstract_inverted_index.highly | 27 |
| abstract_inverted_index.hinder | 17 |
| abstract_inverted_index.method | 49, 74 |
| abstract_inverted_index.number | 64, 93 |
| abstract_inverted_index.target | 13, 24 |
| abstract_inverted_index.widely | 6 |
| abstract_inverted_index.desired | 63 |
| abstract_inverted_index.general | 47 |
| abstract_inverted_index.methods | 4 |
| abstract_inverted_index.problem | 35 |
| abstract_inverted_index.protein | 38, 78 |
| abstract_inverted_index.samples | 10 |
| abstract_inverted_index.segment | 100 |
| abstract_inverted_index.compared | 81 |
| abstract_inverted_index.consider | 33 |
| abstract_inverted_index.contacts | 96 |
| abstract_inverted_index.efficacy | 71 |
| abstract_inverted_index.estimate | 91 |
| abstract_inverted_index.example, | 89 |
| abstract_inverted_index.existing | 83 |
| abstract_inverted_index.followed | 57 |
| abstract_inverted_index.maintain | 61 |
| abstract_inverted_index.multiple | 52 |
| abstract_inverted_index.problem, | 80 |
| abstract_inverted_index.proposes | 45 |
| abstract_inverted_index.protein. | 106 |
| abstract_inverted_index.sampling | 37, 79 |
| abstract_inverted_index.tackling | 76 |
| abstract_inverted_index.Boltzmann | 42 |
| abstract_inverted_index.particle, | 56 |
| abstract_inverted_index.SARS-CoV-2 | 103 |
| abstract_inverted_index.Sequential | 0 |
| abstract_inverted_index.degeneracy | 15 |
| abstract_inverted_index.methods.As | 85 |
| abstract_inverted_index.motivating | 30 |
| abstract_inverted_index.propagates | 51 |
| abstract_inverted_index.resampling | 59 |
| abstract_inverted_index.simulation | 67 |
| abstract_inverted_index.structures | 39 |
| abstract_inverted_index.descendants | 53 |
| abstract_inverted_index.intractable | 12 |
| abstract_inverted_index.particles.A | 66 |
| abstract_inverted_index.application, | 31 |
| abstract_inverted_index.demonstrates | 69 |
| abstract_inverted_index.distribution | 25 |
| abstract_inverted_index.constrained.As | 28 |
| abstract_inverted_index.distribution.This | 43 |
| abstract_inverted_index.distributions.Weight | 14 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026713161 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I151746483 |
| citation_normalized_percentile.value | 0.14546144 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |