Estimating conditional hazard functions and densities with the highly-adaptive lasso Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2404.11083
We consider estimation of conditional hazard functions and densities over the class of multivariate càdlàg functions with uniformly bounded sectional variation norm when data are either fully observed or subject to right-censoring. We demonstrate that the empirical risk minimizer is either not well-defined or not consistent for estimation of conditional hazard functions and densities. Under a smoothness assumption about the data-generating distribution, a highly-adaptive lasso estimator based on a particular data-adaptive sieve achieves the same convergence rate as has been shown to hold for the empirical risk minimizer in settings where the latter is well-defined. We use this result to study a highly-adaptive lasso estimator of a conditional hazard function based on right-censored data. We also propose a new conditional density estimator and derive its convergence rate. Finally, we show that the result is of interest also for settings where the empirical risk minimizer is well-defined, because the highly-adaptive lasso depends on a much smaller number of basis function than the empirical risk minimizer.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2404.11083
- https://arxiv.org/pdf/2404.11083
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394946668
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394946668Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2404.11083Digital Object Identifier
- Title
-
Estimating conditional hazard functions and densities with the highly-adaptive lassoWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-04-17Full publication date if available
- Authors
-
Anders Munch, Thomas Alexander Gerds, Mark J. van der Laan, Helene C. W. RytgaardList of authors in order
- Landing page
-
https://arxiv.org/abs/2404.11083Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2404.11083Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2404.11083Direct OA link when available
- Concepts
-
Lasso (programming language), Hazard, Econometrics, Statistics, Conditional probability distribution, Mathematics, Computer science, Biology, Ecology, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394946668 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2404.11083 |
| ids.doi | https://doi.org/10.48550/arxiv.2404.11083 |
| ids.openalex | https://openalex.org/W4394946668 |
| fwci | |
| type | preprint |
| title | Estimating conditional hazard functions and densities with the highly-adaptive lasso |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10876 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.39739999175071716 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2207 |
| topics[0].subfield.display_name | Control and Systems Engineering |
| topics[0].display_name | Fault Detection and Control Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C37616216 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7792381644248962 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3218363 |
| concepts[0].display_name | Lasso (programming language) |
| concepts[1].id | https://openalex.org/C49261128 |
| concepts[1].level | 2 |
| concepts[1].score | 0.562129557132721 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1132455 |
| concepts[1].display_name | Hazard |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.553378701210022 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.44335421919822693 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C43555835 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4268793761730194 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2300258 |
| concepts[4].display_name | Conditional probability distribution |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3857429325580597 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3837987184524536 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.1479949951171875 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0698208212852478 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| concepts[9].id | https://openalex.org/C136764020 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[9].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/lasso |
| keywords[0].score | 0.7792381644248962 |
| keywords[0].display_name | Lasso (programming language) |
| keywords[1].id | https://openalex.org/keywords/hazard |
| keywords[1].score | 0.562129557132721 |
| keywords[1].display_name | Hazard |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.553378701210022 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.44335421919822693 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/conditional-probability-distribution |
| keywords[4].score | 0.4268793761730194 |
| keywords[4].display_name | Conditional probability distribution |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.3857429325580597 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.3837987184524536 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.1479949951171875 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/ecology |
| keywords[8].score | 0.0698208212852478 |
| keywords[8].display_name | Ecology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2404.11083 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2404.11083 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2404.11083 |
| locations[1].id | doi:10.48550/arxiv.2404.11083 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2404.11083 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030719435 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4625-1465 |
| authorships[0].author.display_name | Anders Munch |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Munch, Anders |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5088993988 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5955-816X |
| authorships[1].author.display_name | Thomas Alexander Gerds |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gerds, Thomas A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110130449 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Mark J. van der Laan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | van der Laan, Mark J. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5030194359 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2096-9823 |
| authorships[3].author.display_name | Helene C. W. Rytgaard |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Rytgaard, Helene C. W. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2404.11083 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating conditional hazard functions and densities with the highly-adaptive lasso |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10876 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.39739999175071716 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2207 |
| primary_topic.subfield.display_name | Control and Systems Engineering |
| primary_topic.display_name | Fault Detection and Control Systems |
| related_works | https://openalex.org/W4256576576, https://openalex.org/W3090384609, https://openalex.org/W3194013178, https://openalex.org/W4249086404, https://openalex.org/W4236464082, https://openalex.org/W2790019364, https://openalex.org/W2212119398, https://openalex.org/W4288780803, https://openalex.org/W2187089732, https://openalex.org/W3123572194 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2404.11083 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2404.11083 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2404.11083 |
| primary_location.id | pmh:oai:arXiv.org:2404.11083 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2404.11083 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2404.11083 |
| publication_date | 2024-04-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 55, 62, 68, 101, 106, 117, 152 |
| abstract_inverted_index.We | 0, 32, 95, 114 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.in | 88 |
| abstract_inverted_index.is | 39, 93, 133, 144 |
| abstract_inverted_index.of | 3, 12, 48, 105, 134, 156 |
| abstract_inverted_index.on | 67, 111, 151 |
| abstract_inverted_index.or | 28, 43 |
| abstract_inverted_index.to | 30, 81, 99 |
| abstract_inverted_index.we | 128 |
| abstract_inverted_index.and | 7, 52, 122 |
| abstract_inverted_index.are | 24 |
| abstract_inverted_index.for | 46, 83, 137 |
| abstract_inverted_index.has | 78 |
| abstract_inverted_index.its | 124 |
| abstract_inverted_index.new | 118 |
| abstract_inverted_index.not | 41, 44 |
| abstract_inverted_index.the | 10, 35, 59, 73, 84, 91, 131, 140, 147, 160 |
| abstract_inverted_index.use | 96 |
| abstract_inverted_index.also | 115, 136 |
| abstract_inverted_index.been | 79 |
| abstract_inverted_index.data | 23 |
| abstract_inverted_index.hold | 82 |
| abstract_inverted_index.much | 153 |
| abstract_inverted_index.norm | 21 |
| abstract_inverted_index.over | 9 |
| abstract_inverted_index.rate | 76 |
| abstract_inverted_index.risk | 37, 86, 142, 162 |
| abstract_inverted_index.same | 74 |
| abstract_inverted_index.show | 129 |
| abstract_inverted_index.than | 159 |
| abstract_inverted_index.that | 34, 130 |
| abstract_inverted_index.this | 97 |
| abstract_inverted_index.when | 22 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.Under | 54 |
| abstract_inverted_index.about | 58 |
| abstract_inverted_index.based | 66, 110 |
| abstract_inverted_index.basis | 157 |
| abstract_inverted_index.class | 11 |
| abstract_inverted_index.data. | 113 |
| abstract_inverted_index.fully | 26 |
| abstract_inverted_index.lasso | 64, 103, 149 |
| abstract_inverted_index.rate. | 126 |
| abstract_inverted_index.shown | 80 |
| abstract_inverted_index.sieve | 71 |
| abstract_inverted_index.study | 100 |
| abstract_inverted_index.where | 90, 139 |
| abstract_inverted_index.derive | 123 |
| abstract_inverted_index.either | 25, 40 |
| abstract_inverted_index.hazard | 5, 50, 108 |
| abstract_inverted_index.latter | 92 |
| abstract_inverted_index.number | 155 |
| abstract_inverted_index.result | 98, 132 |
| abstract_inverted_index.because | 146 |
| abstract_inverted_index.bounded | 18 |
| abstract_inverted_index.density | 120 |
| abstract_inverted_index.depends | 150 |
| abstract_inverted_index.propose | 116 |
| abstract_inverted_index.smaller | 154 |
| abstract_inverted_index.subject | 29 |
| abstract_inverted_index.Finally, | 127 |
| abstract_inverted_index.achieves | 72 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.càdlàg | 14 |
| abstract_inverted_index.function | 109, 158 |
| abstract_inverted_index.interest | 135 |
| abstract_inverted_index.observed | 27 |
| abstract_inverted_index.settings | 89, 138 |
| abstract_inverted_index.densities | 8 |
| abstract_inverted_index.empirical | 36, 85, 141, 161 |
| abstract_inverted_index.estimator | 65, 104, 121 |
| abstract_inverted_index.functions | 6, 15, 51 |
| abstract_inverted_index.minimizer | 38, 87, 143 |
| abstract_inverted_index.sectional | 19 |
| abstract_inverted_index.uniformly | 17 |
| abstract_inverted_index.variation | 20 |
| abstract_inverted_index.assumption | 57 |
| abstract_inverted_index.consistent | 45 |
| abstract_inverted_index.densities. | 53 |
| abstract_inverted_index.estimation | 2, 47 |
| abstract_inverted_index.minimizer. | 163 |
| abstract_inverted_index.particular | 69 |
| abstract_inverted_index.smoothness | 56 |
| abstract_inverted_index.conditional | 4, 49, 107, 119 |
| abstract_inverted_index.convergence | 75, 125 |
| abstract_inverted_index.demonstrate | 33 |
| abstract_inverted_index.multivariate | 13 |
| abstract_inverted_index.well-defined | 42 |
| abstract_inverted_index.data-adaptive | 70 |
| abstract_inverted_index.distribution, | 61 |
| abstract_inverted_index.well-defined, | 145 |
| abstract_inverted_index.well-defined. | 94 |
| abstract_inverted_index.right-censored | 112 |
| abstract_inverted_index.data-generating | 60 |
| abstract_inverted_index.highly-adaptive | 63, 102, 148 |
| abstract_inverted_index.right-censoring. | 31 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |