Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes Networks Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.1109/ichi.2017.41
The true onset time of a disease, particularly slow-onset diseases like Type 2 diabetes mellitus (T2DM), is rarely observable in electronic health records (EHRs). However, it is critical for analysis of time to events and for studying sequences of diseases. The aim of this study is to demonstrate a method for estimating the onset time of such diseases from intermittently observable laboratory results in the specific context of T2DM. A retrospective observational study design is used. A cohort of 5,874 non-diabetic patients from a large healthcare system in the Upper Midwest United States was constructed with a three-year follow-up period. The HbA1c level of each patient was collected from earliest and the latest follow-up. We modeled the patients' HbA1c trajectories through Bayesian networks to estimate the onset time of diabetes. Due to non-random censoring and interventions unobservable from EHR data (such as lifestyle changes), naïve modeling of HbA1c through linear regression or modeling time-to-event through proportional hazard model leads to a clinically infeasible model with no or limited ability to predict the onset time of diabetes. Our model is consistent with clinical knowledge and estimated the onset of diabetes with less than a six-month error for almost half the patients for whom the onset time could be clinically ascertained. To our knowledge, this is the first study of modeling long-term HbA1c progression in non-diabetic patients and estimating the onset time of diabetes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/ichi.2017.41
- OA Status
- green
- Cited By
- 3
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2756256156
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2756256156Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/ichi.2017.41Digital Object Identifier
- Title
-
Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-08-01Full publication date if available
- Authors
-
Won-Suk Oh, Pranjul Yadav, Vipin Kumar, Pedro J. Caraballo, M. Regina Castro, Michael Steinbach, György SimonList of authors in order
- Landing page
-
https://doi.org/10.1109/ichi.2017.41Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/5975351Direct OA link when available
- Concepts
-
Censoring (clinical trials), Proportional hazards model, Unobservable, Medicine, Observational study, Context (archaeology), Disease, Diabetes mellitus, Retrospective cohort study, Bayes' theorem, Bayesian probability, Statistics, Computer science, Econometrics, Internal medicine, Artificial intelligence, Mathematics, Endocrinology, Biology, Paleontology, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 1, 2018: 2Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2756256156 |
|---|---|
| doi | https://doi.org/10.1109/ichi.2017.41 |
| ids.doi | https://doi.org/10.1109/ichi.2017.41 |
| ids.mag | 2756256156 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/29862384 |
| ids.openalex | https://openalex.org/W2756256156 |
| fwci | 0.68753891 |
| type | article |
| title | Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes Networks |
| biblio.issue | |
| biblio.volume | 39 |
| biblio.last_page | 379 |
| biblio.first_page | 374 |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10560 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diabetes Management and Research |
| topics[2].id | https://openalex.org/T10027 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9912999868392944 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C137668524 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7263850569725037 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q189813 |
| concepts[0].display_name | Censoring (clinical trials) |
| concepts[1].id | https://openalex.org/C50382708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6519943475723267 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q223218 |
| concepts[1].display_name | Proportional hazards model |
| concepts[2].id | https://openalex.org/C2780695315 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6376477479934692 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3799040 |
| concepts[2].display_name | Unobservable |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5917140245437622 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C23131810 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5507312417030334 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[4].display_name | Observational study |
| concepts[5].id | https://openalex.org/C2779343474 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5146461725234985 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[5].display_name | Context (archaeology) |
| concepts[6].id | https://openalex.org/C2779134260 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4978616237640381 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[6].display_name | Disease |
| concepts[7].id | https://openalex.org/C555293320 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49269917607307434 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[7].display_name | Diabetes mellitus |
| concepts[8].id | https://openalex.org/C167135981 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4344158470630646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2146302 |
| concepts[8].display_name | Retrospective cohort study |
| concepts[9].id | https://openalex.org/C207201462 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4308871328830719 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[9].display_name | Bayes' theorem |
| concepts[10].id | https://openalex.org/C107673813 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42483091354370117 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[10].display_name | Bayesian probability |
| concepts[11].id | https://openalex.org/C105795698 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3967536687850952 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[11].display_name | Statistics |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3821401000022888 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C149782125 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3257479965686798 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[13].display_name | Econometrics |
| concepts[14].id | https://openalex.org/C126322002 |
| concepts[14].level | 1 |
| concepts[14].score | 0.2444412112236023 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[14].display_name | Internal medicine |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.2313646376132965 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.19253209233283997 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C134018914 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[17].display_name | Endocrinology |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C142724271 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[20].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/censoring |
| keywords[0].score | 0.7263850569725037 |
| keywords[0].display_name | Censoring (clinical trials) |
| keywords[1].id | https://openalex.org/keywords/proportional-hazards-model |
| keywords[1].score | 0.6519943475723267 |
| keywords[1].display_name | Proportional hazards model |
| keywords[2].id | https://openalex.org/keywords/unobservable |
| keywords[2].score | 0.6376477479934692 |
| keywords[2].display_name | Unobservable |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.5917140245437622 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/observational-study |
| keywords[4].score | 0.5507312417030334 |
| keywords[4].display_name | Observational study |
| keywords[5].id | https://openalex.org/keywords/context |
| keywords[5].score | 0.5146461725234985 |
| keywords[5].display_name | Context (archaeology) |
| keywords[6].id | https://openalex.org/keywords/disease |
| keywords[6].score | 0.4978616237640381 |
| keywords[6].display_name | Disease |
| keywords[7].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[7].score | 0.49269917607307434 |
| keywords[7].display_name | Diabetes mellitus |
| keywords[8].id | https://openalex.org/keywords/retrospective-cohort-study |
| keywords[8].score | 0.4344158470630646 |
| keywords[8].display_name | Retrospective cohort study |
| keywords[9].id | https://openalex.org/keywords/bayes-theorem |
| keywords[9].score | 0.4308871328830719 |
| keywords[9].display_name | Bayes' theorem |
| keywords[10].id | https://openalex.org/keywords/bayesian-probability |
| keywords[10].score | 0.42483091354370117 |
| keywords[10].display_name | Bayesian probability |
| keywords[11].id | https://openalex.org/keywords/statistics |
| keywords[11].score | 0.3967536687850952 |
| keywords[11].display_name | Statistics |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3821401000022888 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/econometrics |
| keywords[13].score | 0.3257479965686798 |
| keywords[13].display_name | Econometrics |
| keywords[14].id | https://openalex.org/keywords/internal-medicine |
| keywords[14].score | 0.2444412112236023 |
| keywords[14].display_name | Internal medicine |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.2313646376132965 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.19253209233283997 |
| keywords[16].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/ichi.2017.41 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2017 IEEE International Conference on Healthcare Informatics (ICHI) |
| locations[0].landing_page_url | https://doi.org/10.1109/ichi.2017.41 |
| locations[1].id | pmid:29862384 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/29862384 |
| locations[2].id | pmh:oai:europepmc.org:4925966 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://europepmc.org/pmc/articles/PMC5975351 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:5975351 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Proc (IEEE Int Conf Healthc Inform) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5975351 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5033221402 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0874-5026 |
| authorships[0].author.display_name | Won-Suk Oh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Health Informatics, University of Minnesota |
| authorships[0].institutions[0].id | https://openalex.org/I130238516 |
| authorships[0].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Minnesota |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wonsuk Oh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute for Health Informatics, University of Minnesota |
| authorships[1].author.id | https://openalex.org/A5003976436 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7860-5830 |
| authorships[1].author.display_name | Pranjul Yadav |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of Minnesota |
| authorships[1].institutions[0].id | https://openalex.org/I130238516 |
| authorships[1].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Minnesota |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Pranjul Yadav |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, University of Minnesota |
| authorships[2].author.id | https://openalex.org/A5100645812 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9040-2665 |
| authorships[2].author.display_name | Vipin Kumar |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of Minnesota |
| authorships[2].institutions[0].id | https://openalex.org/I130238516 |
| authorships[2].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Minnesota |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Vipin Kumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, University of Minnesota |
| authorships[3].author.id | https://openalex.org/A5045680515 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9050-7080 |
| authorships[3].author.display_name | Pedro J. Caraballo |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210125099 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of General Internal Medicine, Mayo Clinic |
| authorships[3].institutions[0].id | https://openalex.org/I4210125099 |
| authorships[3].institutions[0].ror | https://ror.org/03jp40720 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210125099 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Mayo Clinic in Arizona |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pedro J. Caraballo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of General Internal Medicine, Mayo Clinic |
| authorships[4].author.id | https://openalex.org/A5011038225 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2784-8776 |
| authorships[4].author.display_name | M. Regina Castro |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210125099 |
| authorships[4].affiliations[0].raw_affiliation_string | Division of Endocrinology Diabetes Metabolism & Nutrition, Mayo Clinic |
| authorships[4].institutions[0].id | https://openalex.org/I4210125099 |
| authorships[4].institutions[0].ror | https://ror.org/03jp40720 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1330342723, https://openalex.org/I4210125099 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Mayo Clinic in Arizona |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | M. Regina Castro |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Division of Endocrinology Diabetes Metabolism & Nutrition, Mayo Clinic |
| authorships[5].author.id | https://openalex.org/A5089436894 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7309-6395 |
| authorships[5].author.display_name | Michael Steinbach |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University of Minnesota |
| authorships[5].institutions[0].id | https://openalex.org/I130238516 |
| authorships[5].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Minnesota |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Michael S. Steinbach |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, University of Minnesota |
| authorships[6].author.id | https://openalex.org/A5050008389 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-4715-5934 |
| authorships[6].author.display_name | György Simon |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I130238516 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Medicine, University of Minnesota |
| authorships[6].institutions[0].id | https://openalex.org/I130238516 |
| authorships[6].institutions[0].ror | https://ror.org/017zqws13 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I130238516 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Minnesota |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Gyorgy J. Simon |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Medicine, University of Minnesota |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5975351 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes Networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2614563012, https://openalex.org/W4293337373, https://openalex.org/W1968533609, https://openalex.org/W1984270607, https://openalex.org/W2349333549, https://openalex.org/W2486803649, https://openalex.org/W2116445905, https://openalex.org/W3140685204, https://openalex.org/W2019307650, https://openalex.org/W2026784993 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2018 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:5975351 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Proc (IEEE Int Conf Healthc Inform) |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/5975351 |
| primary_location.id | doi:10.1109/ichi.2017.41 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2017 IEEE International Conference on Healthcare Informatics (ICHI) |
| primary_location.landing_page_url | https://doi.org/10.1109/ichi.2017.41 |
| publication_date | 2017-08-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2134605330, https://openalex.org/W2156160269, https://openalex.org/W2038387082, https://openalex.org/W2138592519, https://openalex.org/W2158822657, https://openalex.org/W2008035769, https://openalex.org/W6713452953, https://openalex.org/W1973432857, https://openalex.org/W1615454278, https://openalex.org/W2572656025, https://openalex.org/W2243040572, https://openalex.org/W2405641928, https://openalex.org/W2298208730, https://openalex.org/W2151068025, https://openalex.org/W2004910511, https://openalex.org/W2029800614, https://openalex.org/W2086199738, https://openalex.org/W2139265932, https://openalex.org/W4250589301, https://openalex.org/W2569214105, https://openalex.org/W6764011540, https://openalex.org/W2397866408, https://openalex.org/W2949866548, https://openalex.org/W2574301230, https://openalex.org/W2343567309, https://openalex.org/W4301798662, https://openalex.org/W2059158127 |
| referenced_works_count | 27 |
| abstract_inverted_index.2 | 12 |
| abstract_inverted_index.A | 69, 76 |
| abstract_inverted_index.a | 5, 48, 83, 96, 160, 192 |
| abstract_inverted_index.To | 209 |
| abstract_inverted_index.We | 114 |
| abstract_inverted_index.as | 141 |
| abstract_inverted_index.be | 206 |
| abstract_inverted_index.in | 19, 63, 87, 222 |
| abstract_inverted_index.is | 16, 26, 45, 74, 178, 213 |
| abstract_inverted_index.it | 25 |
| abstract_inverted_index.no | 165 |
| abstract_inverted_index.of | 4, 30, 38, 42, 55, 67, 78, 103, 128, 146, 174, 187, 217, 230 |
| abstract_inverted_index.or | 151, 166 |
| abstract_inverted_index.to | 32, 46, 123, 131, 159, 169 |
| abstract_inverted_index.Due | 130 |
| abstract_inverted_index.EHR | 138 |
| abstract_inverted_index.Our | 176 |
| abstract_inverted_index.The | 0, 40, 100 |
| abstract_inverted_index.aim | 41 |
| abstract_inverted_index.and | 34, 110, 134, 183, 225 |
| abstract_inverted_index.for | 28, 35, 50, 195, 200 |
| abstract_inverted_index.our | 210 |
| abstract_inverted_index.the | 52, 64, 88, 111, 116, 125, 171, 185, 198, 202, 214, 227 |
| abstract_inverted_index.was | 93, 106 |
| abstract_inverted_index.Type | 11 |
| abstract_inverted_index.data | 139 |
| abstract_inverted_index.each | 104 |
| abstract_inverted_index.from | 58, 82, 108, 137 |
| abstract_inverted_index.half | 197 |
| abstract_inverted_index.less | 190 |
| abstract_inverted_index.like | 10 |
| abstract_inverted_index.such | 56 |
| abstract_inverted_index.than | 191 |
| abstract_inverted_index.this | 43, 212 |
| abstract_inverted_index.time | 3, 31, 54, 127, 173, 204, 229 |
| abstract_inverted_index.true | 1 |
| abstract_inverted_index.whom | 201 |
| abstract_inverted_index.with | 95, 164, 180, 189 |
| abstract_inverted_index.(such | 140 |
| abstract_inverted_index.5,874 | 79 |
| abstract_inverted_index.HbA1c | 101, 118, 147, 220 |
| abstract_inverted_index.T2DM. | 68 |
| abstract_inverted_index.Upper | 89 |
| abstract_inverted_index.could | 205 |
| abstract_inverted_index.error | 194 |
| abstract_inverted_index.first | 215 |
| abstract_inverted_index.large | 84 |
| abstract_inverted_index.leads | 158 |
| abstract_inverted_index.level | 102 |
| abstract_inverted_index.model | 157, 163, 177 |
| abstract_inverted_index.onset | 2, 53, 126, 172, 186, 203, 228 |
| abstract_inverted_index.study | 44, 72, 216 |
| abstract_inverted_index.used. | 75 |
| abstract_inverted_index.States | 92 |
| abstract_inverted_index.United | 91 |
| abstract_inverted_index.almost | 196 |
| abstract_inverted_index.cohort | 77 |
| abstract_inverted_index.design | 73 |
| abstract_inverted_index.events | 33 |
| abstract_inverted_index.hazard | 156 |
| abstract_inverted_index.health | 21 |
| abstract_inverted_index.latest | 112 |
| abstract_inverted_index.linear | 149 |
| abstract_inverted_index.method | 49 |
| abstract_inverted_index.naïve | 144 |
| abstract_inverted_index.rarely | 17 |
| abstract_inverted_index.system | 86 |
| abstract_inverted_index.(EHRs). | 23 |
| abstract_inverted_index.(T2DM), | 15 |
| abstract_inverted_index.Midwest | 90 |
| abstract_inverted_index.ability | 168 |
| abstract_inverted_index.context | 66 |
| abstract_inverted_index.limited | 167 |
| abstract_inverted_index.modeled | 115 |
| abstract_inverted_index.patient | 105 |
| abstract_inverted_index.period. | 99 |
| abstract_inverted_index.predict | 170 |
| abstract_inverted_index.records | 22 |
| abstract_inverted_index.results | 62 |
| abstract_inverted_index.through | 120, 148, 154 |
| abstract_inverted_index.Bayesian | 121 |
| abstract_inverted_index.However, | 24 |
| abstract_inverted_index.analysis | 29 |
| abstract_inverted_index.clinical | 181 |
| abstract_inverted_index.critical | 27 |
| abstract_inverted_index.diabetes | 13, 188 |
| abstract_inverted_index.disease, | 6 |
| abstract_inverted_index.diseases | 9, 57 |
| abstract_inverted_index.earliest | 109 |
| abstract_inverted_index.estimate | 124 |
| abstract_inverted_index.mellitus | 14 |
| abstract_inverted_index.modeling | 145, 152, 218 |
| abstract_inverted_index.networks | 122 |
| abstract_inverted_index.patients | 81, 199, 224 |
| abstract_inverted_index.specific | 65 |
| abstract_inverted_index.studying | 36 |
| abstract_inverted_index.censoring | 133 |
| abstract_inverted_index.changes), | 143 |
| abstract_inverted_index.collected | 107 |
| abstract_inverted_index.diabetes. | 129, 175, 231 |
| abstract_inverted_index.diseases. | 39 |
| abstract_inverted_index.estimated | 184 |
| abstract_inverted_index.follow-up | 98 |
| abstract_inverted_index.knowledge | 182 |
| abstract_inverted_index.lifestyle | 142 |
| abstract_inverted_index.long-term | 219 |
| abstract_inverted_index.patients' | 117 |
| abstract_inverted_index.sequences | 37 |
| abstract_inverted_index.six-month | 193 |
| abstract_inverted_index.clinically | 161, 207 |
| abstract_inverted_index.consistent | 179 |
| abstract_inverted_index.electronic | 20 |
| abstract_inverted_index.estimating | 51, 226 |
| abstract_inverted_index.follow-up. | 113 |
| abstract_inverted_index.healthcare | 85 |
| abstract_inverted_index.infeasible | 162 |
| abstract_inverted_index.knowledge, | 211 |
| abstract_inverted_index.laboratory | 61 |
| abstract_inverted_index.non-random | 132 |
| abstract_inverted_index.observable | 18, 60 |
| abstract_inverted_index.regression | 150 |
| abstract_inverted_index.slow-onset | 8 |
| abstract_inverted_index.three-year | 97 |
| abstract_inverted_index.constructed | 94 |
| abstract_inverted_index.demonstrate | 47 |
| abstract_inverted_index.progression | 221 |
| abstract_inverted_index.ascertained. | 208 |
| abstract_inverted_index.non-diabetic | 80, 223 |
| abstract_inverted_index.particularly | 7 |
| abstract_inverted_index.proportional | 155 |
| abstract_inverted_index.trajectories | 119 |
| abstract_inverted_index.unobservable | 136 |
| abstract_inverted_index.interventions | 135 |
| abstract_inverted_index.observational | 71 |
| abstract_inverted_index.retrospective | 70 |
| abstract_inverted_index.time-to-event | 153 |
| abstract_inverted_index.intermittently | 59 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.76362639 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |