Estimating elliptic flow coefficient in heavy ion collisions using deep learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1103/physrevd.105.114022
Machine Learning (ML) techniques have been employed for the high energy physics (HEP) community since the early 80s to deal with a broad spectrum of problems. This work explores the prospects of using Deep Learning techniques to estimate elliptic flow ($v_2$) in heavy-ion collisions at the RHIC and LHC energies. A novel method is developed to process the input observables from particle kinematic information. The proposed DNN model is trained with Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.02$ TeV minimum bias events simulated with AMPT model. The predictions from the ML technique are compared to both simulation and experiment. The Deep Learning model seems to preserve the centrality and energy dependence of $v_2$ for the LHC and RHIC energies. The DNN model is also quite successful in predicting the $p_{\rm T}$ dependence of $v_2$. When subjected to event simulation with additional noise, the proposed DNN model still keeps the robustness and prediction accuracy intact up to a reasonable extent.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1103/physrevd.105.114022
- http://link.aps.org/pdf/10.1103/PhysRevD.105.114022
- OA Status
- hybrid
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221147929
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221147929Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1103/physrevd.105.114022Digital Object Identifier
- Title
-
Estimating elliptic flow coefficient in heavy ion collisions using deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-06-17Full publication date if available
- Authors
-
Neelkamal Mallick, Suraj Prasad, A. N. Mishra, R. Sahoo, F. BarileList of authors in order
- Landing page
-
https://doi.org/10.1103/physrevd.105.114022Publisher landing page
- PDF URL
-
https://link.aps.org/pdf/10.1103/PhysRevD.105.114022Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.aps.org/pdf/10.1103/PhysRevD.105.114022Direct OA link when available
- Concepts
-
Large Hadron Collider, Robustness (evolution), Observable, Elliptic flow, Physics, Deep learning, Energy (signal processing), Particle physics, Noise (video), Work (physics), Nuclear physics, Centrality, Heavy ion, Statistical physics, Computer science, Artificial intelligence, Ion, Mathematics, Statistics, Quantum mechanics, Image (mathematics), Biochemistry, Gene, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221147929 |
|---|---|
| doi | https://doi.org/10.1103/physrevd.105.114022 |
| ids.doi | https://doi.org/10.48550/arxiv.2203.01246 |
| ids.openalex | https://openalex.org/W4221147929 |
| fwci | 0.0 |
| type | article |
| title | Estimating elliptic flow coefficient in heavy ion collisions using deep learning |
| biblio.issue | 11 |
| biblio.volume | 105 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13497 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9879000186920166 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1211 |
| topics[0].subfield.display_name | Philosophy |
| topics[0].display_name | Hermeneutics and Narrative Identity |
| topics[1].id | https://openalex.org/T13695 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9749000072479248 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3600 |
| topics[1].subfield.display_name | General Health Professions |
| topics[1].display_name | Aging, Elder Care, and Social Issues |
| topics[2].id | https://openalex.org/T13099 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health, Medicine and Society |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87668248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7760941982269287 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[0].display_name | Large Hadron Collider |
| concepts[1].id | https://openalex.org/C63479239 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7644387483596802 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[1].display_name | Robustness (evolution) |
| concepts[2].id | https://openalex.org/C32848918 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7370104789733887 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q845789 |
| concepts[2].display_name | Observable |
| concepts[3].id | https://openalex.org/C80903900 |
| concepts[3].level | 4 |
| concepts[3].score | 0.6798098683357239 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5365798 |
| concepts[3].display_name | Elliptic flow |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.567551851272583 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5458574295043945 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C186370098 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4613838791847229 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q442787 |
| concepts[6].display_name | Energy (signal processing) |
| concepts[7].id | https://openalex.org/C109214941 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4510827958583832 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[7].display_name | Particle physics |
| concepts[8].id | https://openalex.org/C99498987 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4366513788700104 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[8].display_name | Noise (video) |
| concepts[9].id | https://openalex.org/C18762648 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42882171273231506 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[9].display_name | Work (physics) |
| concepts[10].id | https://openalex.org/C185544564 |
| concepts[10].level | 1 |
| concepts[10].score | 0.42075812816619873 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[10].display_name | Nuclear physics |
| concepts[11].id | https://openalex.org/C53811970 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4145761728286743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5062194 |
| concepts[11].display_name | Centrality |
| concepts[12].id | https://openalex.org/C2988362075 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3916338384151459 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12416032 |
| concepts[12].display_name | Heavy ion |
| concepts[13].id | https://openalex.org/C121864883 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3763318955898285 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[13].display_name | Statistical physics |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.3700522184371948 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C154945302 |
| concepts[15].level | 1 |
| concepts[15].score | 0.3515734374523163 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[15].display_name | Artificial intelligence |
| concepts[16].id | https://openalex.org/C145148216 |
| concepts[16].level | 2 |
| concepts[16].score | 0.3268910050392151 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[16].display_name | Ion |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.16450870037078857 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.16121184825897217 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.10000866651535034 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C115961682 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0930059552192688 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[20].display_name | Image (mathematics) |
| concepts[21].id | https://openalex.org/C55493867 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[21].display_name | Biochemistry |
| concepts[22].id | https://openalex.org/C104317684 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[22].display_name | Gene |
| concepts[23].id | https://openalex.org/C185592680 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[23].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[0].score | 0.7760941982269287 |
| keywords[0].display_name | Large Hadron Collider |
| keywords[1].id | https://openalex.org/keywords/robustness |
| keywords[1].score | 0.7644387483596802 |
| keywords[1].display_name | Robustness (evolution) |
| keywords[2].id | https://openalex.org/keywords/observable |
| keywords[2].score | 0.7370104789733887 |
| keywords[2].display_name | Observable |
| keywords[3].id | https://openalex.org/keywords/elliptic-flow |
| keywords[3].score | 0.6798098683357239 |
| keywords[3].display_name | Elliptic flow |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.567551851272583 |
| keywords[4].display_name | Physics |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5458574295043945 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/energy |
| keywords[6].score | 0.4613838791847229 |
| keywords[6].display_name | Energy (signal processing) |
| keywords[7].id | https://openalex.org/keywords/particle-physics |
| keywords[7].score | 0.4510827958583832 |
| keywords[7].display_name | Particle physics |
| keywords[8].id | https://openalex.org/keywords/noise |
| keywords[8].score | 0.4366513788700104 |
| keywords[8].display_name | Noise (video) |
| keywords[9].id | https://openalex.org/keywords/work |
| keywords[9].score | 0.42882171273231506 |
| keywords[9].display_name | Work (physics) |
| keywords[10].id | https://openalex.org/keywords/nuclear-physics |
| keywords[10].score | 0.42075812816619873 |
| keywords[10].display_name | Nuclear physics |
| keywords[11].id | https://openalex.org/keywords/centrality |
| keywords[11].score | 0.4145761728286743 |
| keywords[11].display_name | Centrality |
| keywords[12].id | https://openalex.org/keywords/heavy-ion |
| keywords[12].score | 0.3916338384151459 |
| keywords[12].display_name | Heavy ion |
| keywords[13].id | https://openalex.org/keywords/statistical-physics |
| keywords[13].score | 0.3763318955898285 |
| keywords[13].display_name | Statistical physics |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.3700522184371948 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[15].score | 0.3515734374523163 |
| keywords[15].display_name | Artificial intelligence |
| keywords[16].id | https://openalex.org/keywords/ion |
| keywords[16].score | 0.3268910050392151 |
| keywords[16].display_name | Ion |
| keywords[17].id | https://openalex.org/keywords/mathematics |
| keywords[17].score | 0.16450870037078857 |
| keywords[17].display_name | Mathematics |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.16121184825897217 |
| keywords[18].display_name | Statistics |
| keywords[19].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[19].score | 0.10000866651535034 |
| keywords[19].display_name | Quantum mechanics |
| keywords[20].id | https://openalex.org/keywords/image |
| keywords[20].score | 0.0930059552192688 |
| keywords[20].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1103/physrevd.105.114022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210238307 |
| locations[0].source.issn | 2470-0010, 2470-0029, 2470-0037 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2470-0010 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Physical review. D/Physical review. D. |
| locations[0].source.host_organization | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_name | American Physical Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320261 |
| locations[0].source.host_organization_lineage_names | American Physical Society |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://link.aps.org/pdf/10.1103/PhysRevD.105.114022 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Physical Review D |
| locations[0].landing_page_url | https://doi.org/10.1103/physrevd.105.114022 |
| locations[1].id | pmh:oai:arXiv.org:2203.01246 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2203.01246 |
| locations[1].version | publishedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2203.01246 |
| locations[2].id | pmh:oai:cds.cern.ch:2803022 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[2].source.host_organization | https://openalex.org/I67311998 |
| locations[2].source.host_organization_name | European Organization for Nuclear Research |
| locations[2].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://cds.cern.ch/record/2803022 |
| locations[3].id | doi:10.48550/arxiv.2203.01246 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article-journal |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2203.01246 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5082403328 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2706-1025 |
| authorships[0].author.display_name | Neelkamal Mallick |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mallick, Neelkamal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5076592941 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0607-2841 |
| authorships[1].author.display_name | Suraj Prasad |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Prasad, Suraj |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5011506442 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3892-2719 |
| authorships[2].author.display_name | A. N. Mishra |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mishra, Aditya Nath |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5077943951 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3334-0661 |
| authorships[3].author.display_name | R. Sahoo |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Sahoo, Raghunath |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5108166900 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | F. Barile |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Barnaföldi, Gergely Gábor |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://link.aps.org/pdf/10.1103/PhysRevD.105.114022 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Estimating elliptic flow coefficient in heavy ion collisions using deep learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13497 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9879000186920166 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1211 |
| primary_topic.subfield.display_name | Philosophy |
| primary_topic.display_name | Hermeneutics and Narrative Identity |
| related_works | https://openalex.org/W8548982, https://openalex.org/W5770993, https://openalex.org/W7015657, https://openalex.org/W8680103, https://openalex.org/W5350644, https://openalex.org/W9508757, https://openalex.org/W2476331, https://openalex.org/W7282812, https://openalex.org/W3836573, https://openalex.org/W1272163 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1103/physrevd.105.114022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210238307 |
| best_oa_location.source.issn | 2470-0010, 2470-0029, 2470-0037 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2470-0010 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Physical review. D/Physical review. D. |
| best_oa_location.source.host_organization | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_name | American Physical Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| best_oa_location.source.host_organization_lineage_names | American Physical Society |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevD.105.114022 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Physical Review D |
| best_oa_location.landing_page_url | https://doi.org/10.1103/physrevd.105.114022 |
| primary_location.id | doi:10.1103/physrevd.105.114022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210238307 |
| primary_location.source.issn | 2470-0010, 2470-0029, 2470-0037 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2470-0010 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Physical review. D/Physical review. D. |
| primary_location.source.host_organization | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_name | American Physical Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320261 |
| primary_location.source.host_organization_lineage_names | American Physical Society |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://link.aps.org/pdf/10.1103/PhysRevD.105.114022 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Physical Review D |
| primary_location.landing_page_url | https://doi.org/10.1103/physrevd.105.114022 |
| publication_date | 2022-06-17 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2120240336, https://openalex.org/W2113991821, https://openalex.org/W1680837216, https://openalex.org/W2055620782, https://openalex.org/W2001418612, https://openalex.org/W2042255193, https://openalex.org/W2116281198, https://openalex.org/W2079231314, https://openalex.org/W2055031270, https://openalex.org/W1970780422, https://openalex.org/W2025171678, https://openalex.org/W4206157564, https://openalex.org/W2061964942, https://openalex.org/W2147065898, https://openalex.org/W2048746618, https://openalex.org/W2006193368, https://openalex.org/W2951190561, https://openalex.org/W2760467358, https://openalex.org/W2948856170, https://openalex.org/W2923537029, https://openalex.org/W2837143805, https://openalex.org/W3016029146, https://openalex.org/W2883445762, https://openalex.org/W2131160516, https://openalex.org/W2174024475, https://openalex.org/W2071308300, https://openalex.org/W1985712914, https://openalex.org/W2605346382, https://openalex.org/W2004840381, https://openalex.org/W2064412362, https://openalex.org/W2101916205, https://openalex.org/W2017947604, https://openalex.org/W3142030783, https://openalex.org/W2798523967, https://openalex.org/W3082171833, https://openalex.org/W3134697785, https://openalex.org/W2803398274, https://openalex.org/W2911862657, https://openalex.org/W2090913851, https://openalex.org/W2135174380, https://openalex.org/W2495827047, https://openalex.org/W2060255315, https://openalex.org/W2897868884, https://openalex.org/W2852068008, https://openalex.org/W2013812309, https://openalex.org/W2057126609, https://openalex.org/W2257617748, https://openalex.org/W2563484019, https://openalex.org/W2969392998, https://openalex.org/W2995248424, https://openalex.org/W3201616088, https://openalex.org/W2782719466, https://openalex.org/W4220995063, https://openalex.org/W3082864110, https://openalex.org/W2799070971, https://openalex.org/W2070677980 |
| referenced_works_count | 56 |
| abstract_inverted_index.= | 76 |
| abstract_inverted_index.A | 50 |
| abstract_inverted_index.a | 21, 156 |
| abstract_inverted_index.ML | 90 |
| abstract_inverted_index.at | 44, 73 |
| abstract_inverted_index.in | 41, 126 |
| abstract_inverted_index.is | 53, 68, 122 |
| abstract_inverted_index.of | 24, 31, 111, 132 |
| abstract_inverted_index.to | 18, 36, 55, 94, 104, 136, 155 |
| abstract_inverted_index.up | 154 |
| abstract_inverted_index.80s | 17 |
| abstract_inverted_index.DNN | 66, 120, 144 |
| abstract_inverted_index.LHC | 48, 115 |
| abstract_inverted_index.TeV | 78 |
| abstract_inverted_index.The | 64, 86, 99, 119 |
| abstract_inverted_index.T}$ | 130 |
| abstract_inverted_index.and | 47, 97, 108, 116, 150 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.for | 7, 113 |
| abstract_inverted_index.the | 8, 15, 29, 45, 57, 89, 106, 114, 128, 142, 148 |
| abstract_inverted_index.(ML) | 2 |
| abstract_inverted_index.AMPT | 84 |
| abstract_inverted_index.Deep | 33, 100 |
| abstract_inverted_index.NN}} | 75 |
| abstract_inverted_index.RHIC | 46, 117 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.When | 134 |
| abstract_inverted_index.also | 123 |
| abstract_inverted_index.been | 5 |
| abstract_inverted_index.bias | 80 |
| abstract_inverted_index.both | 95 |
| abstract_inverted_index.deal | 19 |
| abstract_inverted_index.flow | 39 |
| abstract_inverted_index.from | 60, 88 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.high | 9 |
| abstract_inverted_index.with | 20, 70, 83, 139 |
| abstract_inverted_index.work | 27 |
| abstract_inverted_index.$v_2$ | 112 |
| abstract_inverted_index.(HEP) | 12 |
| abstract_inverted_index.5.02$ | 77 |
| abstract_inverted_index.Pb-Pb | 71 |
| abstract_inverted_index.broad | 22 |
| abstract_inverted_index.early | 16 |
| abstract_inverted_index.event | 137 |
| abstract_inverted_index.input | 58 |
| abstract_inverted_index.keeps | 147 |
| abstract_inverted_index.model | 67, 102, 121, 145 |
| abstract_inverted_index.novel | 51 |
| abstract_inverted_index.quite | 124 |
| abstract_inverted_index.seems | 103 |
| abstract_inverted_index.since | 14 |
| abstract_inverted_index.still | 146 |
| abstract_inverted_index.using | 32 |
| abstract_inverted_index.$v_2$. | 133 |
| abstract_inverted_index.energy | 10, 109 |
| abstract_inverted_index.events | 81 |
| abstract_inverted_index.intact | 153 |
| abstract_inverted_index.method | 52 |
| abstract_inverted_index.model. | 85 |
| abstract_inverted_index.noise, | 141 |
| abstract_inverted_index.$p_{\rm | 129 |
| abstract_inverted_index.($v_2$) | 40 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.extent. | 158 |
| abstract_inverted_index.minimum | 79 |
| abstract_inverted_index.physics | 11 |
| abstract_inverted_index.process | 56 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.Learning | 1, 34, 101 |
| abstract_inverted_index.accuracy | 152 |
| abstract_inverted_index.compared | 93 |
| abstract_inverted_index.elliptic | 38 |
| abstract_inverted_index.employed | 6 |
| abstract_inverted_index.estimate | 37 |
| abstract_inverted_index.explores | 28 |
| abstract_inverted_index.particle | 61 |
| abstract_inverted_index.preserve | 105 |
| abstract_inverted_index.proposed | 65, 143 |
| abstract_inverted_index.spectrum | 23 |
| abstract_inverted_index.community | 13 |
| abstract_inverted_index.developed | 54 |
| abstract_inverted_index.energies. | 49, 118 |
| abstract_inverted_index.heavy-ion | 42 |
| abstract_inverted_index.kinematic | 62 |
| abstract_inverted_index.problems. | 25 |
| abstract_inverted_index.prospects | 30 |
| abstract_inverted_index.simulated | 82 |
| abstract_inverted_index.subjected | 135 |
| abstract_inverted_index.technique | 91 |
| abstract_inverted_index.additional | 140 |
| abstract_inverted_index.centrality | 107 |
| abstract_inverted_index.collisions | 43, 72 |
| abstract_inverted_index.dependence | 110, 131 |
| abstract_inverted_index.predicting | 127 |
| abstract_inverted_index.prediction | 151 |
| abstract_inverted_index.reasonable | 157 |
| abstract_inverted_index.robustness | 149 |
| abstract_inverted_index.simulation | 96, 138 |
| abstract_inverted_index.successful | 125 |
| abstract_inverted_index.techniques | 3, 35 |
| abstract_inverted_index.experiment. | 98 |
| abstract_inverted_index.observables | 59 |
| abstract_inverted_index.predictions | 87 |
| abstract_inverted_index.information. | 63 |
| abstract_inverted_index.$\sqrt{s_{\rm | 74 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.12233477 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |