Estimating the Applicability of NDVI and SIF to Gross Primary Productivity and Grain-Yield Monitoring in China Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14133237
Vegetation, a key intermediary linking water, the atmosphere, and the ground, performs extremely important functions in nature and for our existence. Although satellite-based remote-sensing technologies have become important for monitoring vegetation dynamics, selecting the correct remote-sensing vegetation indicator has become paramount for such investigations. This study investigated the consistencies between a photosynthetic activity index (the solar-induced chlorophyll fluorescence (SIF) indicator) and the traditional vegetation index (the Normalized Difference Vegetation Index (NDVI)) among different land-cover types and in different seasons and explored the applicability of NDVI and SIF in different cases by comparing their performances in gross primary production (GPP) and grain-yield-monitoring applications. The vegetation cover and photosynthesis showed decreasing trends, which were mainly concentrated in northern Xinjiang and part of the Qinghai–Tibet Plateau; a decreasing trend was also identified in a small part of Northeast China. The correlations between NDVI and SIF were strong for all land-cover types except evergreen needleleaf forests and evergreen broadleaf forests. Compared with NDVI, SIF had some advantages when monitoring the GPP and grain yields among different land-cover types. For example, SIF could capture the effects of drought on GPP and grain yields better than NDVI. To summarize, as the temporal extent of the available SIF data is extended, SIF will certainly perform increasingly wide applications in agricultural-management research that is closely related to GPP and grain-yield monitoring.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14133237
- https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720
- OA Status
- gold
- Cited By
- 15
- References
- 59
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4286634238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4286634238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14133237Digital Object Identifier
- Title
-
Estimating the Applicability of NDVI and SIF to Gross Primary Productivity and Grain-Yield Monitoring in ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-05Full publication date if available
- Authors
-
Zhaoqiang Zhou, Yibo Ding, Suning Liu, Yao Wang, Qiang Fu, Haiyun ShiList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14133237Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720Direct OA link when available
- Concepts
-
Normalized Difference Vegetation Index, Environmental science, Evergreen, Vegetation (pathology), Land cover, Remote sensing, Primary production, Evergreen forest, Physical geography, Atmospheric sciences, Leaf area index, Land use, Geography, Agronomy, Ecosystem, Geology, Ecology, Biology, Medicine, PathologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 5, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
59Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4286634238 |
|---|---|
| doi | https://doi.org/10.3390/rs14133237 |
| ids.doi | https://doi.org/10.3390/rs14133237 |
| ids.openalex | https://openalex.org/W4286634238 |
| fwci | 3.21556716 |
| type | article |
| title | Estimating the Applicability of NDVI and SIF to Gross Primary Productivity and Grain-Yield Monitoring in China |
| awards[0].id | https://openalex.org/G4986209887 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 51909117 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 13 |
| biblio.volume | 14 |
| biblio.last_page | 3237 |
| biblio.first_page | 3237 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10266 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Plant Water Relations and Carbon Dynamics |
| topics[2].id | https://openalex.org/T10226 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9912999868392944 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Land Use and Ecosystem Services |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C1549246 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8938359618186951 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q718775 |
| concepts[0].display_name | Normalized Difference Vegetation Index |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.728062629699707 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C177924670 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6272785663604736 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190489 |
| concepts[2].display_name | Evergreen |
| concepts[3].id | https://openalex.org/C2776133958 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6137225031852722 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7918366 |
| concepts[3].display_name | Vegetation (pathology) |
| concepts[4].id | https://openalex.org/C2780648208 |
| concepts[4].level | 3 |
| concepts[4].score | 0.6046702265739441 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3001793 |
| concepts[4].display_name | Land cover |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5308395624160767 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C24717449 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5192356705665588 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q515905 |
| concepts[6].display_name | Primary production |
| concepts[7].id | https://openalex.org/C2776554196 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4614063799381256 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1024867 |
| concepts[7].display_name | Evergreen forest |
| concepts[8].id | https://openalex.org/C100970517 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4579131007194519 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[8].display_name | Physical geography |
| concepts[9].id | https://openalex.org/C91586092 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3356935977935791 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q757520 |
| concepts[9].display_name | Atmospheric sciences |
| concepts[10].id | https://openalex.org/C25989453 |
| concepts[10].level | 2 |
| concepts[10].score | 0.27850988507270813 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q446746 |
| concepts[10].display_name | Leaf area index |
| concepts[11].id | https://openalex.org/C4792198 |
| concepts[11].level | 2 |
| concepts[11].score | 0.2203565239906311 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1165944 |
| concepts[11].display_name | Land use |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1834341585636139 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| concepts[13].id | https://openalex.org/C6557445 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17693769931793213 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[13].display_name | Agronomy |
| concepts[14].id | https://openalex.org/C110872660 |
| concepts[14].level | 2 |
| concepts[14].score | 0.1515333354473114 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q37813 |
| concepts[14].display_name | Ecosystem |
| concepts[15].id | https://openalex.org/C127313418 |
| concepts[15].level | 0 |
| concepts[15].score | 0.11863836646080017 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[15].display_name | Geology |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1116342842578888 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C71924100 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[18].display_name | Medicine |
| concepts[19].id | https://openalex.org/C142724271 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[19].display_name | Pathology |
| keywords[0].id | https://openalex.org/keywords/normalized-difference-vegetation-index |
| keywords[0].score | 0.8938359618186951 |
| keywords[0].display_name | Normalized Difference Vegetation Index |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.728062629699707 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/evergreen |
| keywords[2].score | 0.6272785663604736 |
| keywords[2].display_name | Evergreen |
| keywords[3].id | https://openalex.org/keywords/vegetation |
| keywords[3].score | 0.6137225031852722 |
| keywords[3].display_name | Vegetation (pathology) |
| keywords[4].id | https://openalex.org/keywords/land-cover |
| keywords[4].score | 0.6046702265739441 |
| keywords[4].display_name | Land cover |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.5308395624160767 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/primary-production |
| keywords[6].score | 0.5192356705665588 |
| keywords[6].display_name | Primary production |
| keywords[7].id | https://openalex.org/keywords/evergreen-forest |
| keywords[7].score | 0.4614063799381256 |
| keywords[7].display_name | Evergreen forest |
| keywords[8].id | https://openalex.org/keywords/physical-geography |
| keywords[8].score | 0.4579131007194519 |
| keywords[8].display_name | Physical geography |
| keywords[9].id | https://openalex.org/keywords/atmospheric-sciences |
| keywords[9].score | 0.3356935977935791 |
| keywords[9].display_name | Atmospheric sciences |
| keywords[10].id | https://openalex.org/keywords/leaf-area-index |
| keywords[10].score | 0.27850988507270813 |
| keywords[10].display_name | Leaf area index |
| keywords[11].id | https://openalex.org/keywords/land-use |
| keywords[11].score | 0.2203565239906311 |
| keywords[11].display_name | Land use |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.1834341585636139 |
| keywords[12].display_name | Geography |
| keywords[13].id | https://openalex.org/keywords/agronomy |
| keywords[13].score | 0.17693769931793213 |
| keywords[13].display_name | Agronomy |
| keywords[14].id | https://openalex.org/keywords/ecosystem |
| keywords[14].score | 0.1515333354473114 |
| keywords[14].display_name | Ecosystem |
| keywords[15].id | https://openalex.org/keywords/geology |
| keywords[15].score | 0.11863836646080017 |
| keywords[15].display_name | Geology |
| keywords[16].id | https://openalex.org/keywords/ecology |
| keywords[16].score | 0.1116342842578888 |
| keywords[16].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3390/rs14133237 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14133237 |
| locations[1].id | pmh:oai:doaj.org/article:fa3b30425ae446a0be0a902d9d97c819 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 13, p 3237 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/fa3b30425ae446a0be0a902d9d97c819 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/13/3237/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 13; Pages: 3237 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14133237 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5064543545 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0303-1932 |
| authorships[0].author.display_name | Zhaoqiang Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[0].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I3045169105 |
| authorships[0].affiliations[1].raw_affiliation_string | State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[0].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[0].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southern University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhaoqiang Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[1].author.id | https://openalex.org/A5101941989 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2544-3882 |
| authorships[1].author.display_name | Yibo Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210158179 |
| authorships[1].affiliations[0].raw_affiliation_string | Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210158179 |
| authorships[1].institutions[0].ror | https://ror.org/0506q7a98 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210155611, https://openalex.org/I4210158179 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yellow River Institute of Hydraulic Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yibo Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Yellow River Engineering Consulting Co. Ltd., Zhengzhou 450003, China |
| authorships[2].author.id | https://openalex.org/A5101617993 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9209-4400 |
| authorships[2].author.display_name | Suning Liu |
| authorships[2].countries | KR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210104335 |
| authorships[2].affiliations[0].raw_affiliation_string | Center for Climate Physics, Institute for Basic Science, Busan 46241, Korea |
| authorships[2].institutions[0].id | https://openalex.org/I4210104335 |
| authorships[2].institutions[0].ror | https://ror.org/00y0zf565 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210104335 |
| authorships[2].institutions[0].country_code | KR |
| authorships[2].institutions[0].display_name | Institute for Basic Science |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Suning Liu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Climate Physics, Institute for Basic Science, Busan 46241, Korea |
| authorships[3].author.id | https://openalex.org/A5100319046 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4432-1335 |
| authorships[3].author.display_name | Yao Wang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[3].affiliations[0].raw_affiliation_string | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I3045169105 |
| authorships[3].affiliations[1].raw_affiliation_string | State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[3].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Southern University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yao Wang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[4].author.id | https://openalex.org/A5065153972 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4100-2777 |
| authorships[4].author.display_name | Qiang Fu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I169572211 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150006, China |
| authorships[4].institutions[0].id | https://openalex.org/I169572211 |
| authorships[4].institutions[0].ror | https://ror.org/0515nd386 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I169572211 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northeast Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qiang Fu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150006, China |
| authorships[5].author.id | https://openalex.org/A5084054659 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5793-1138 |
| authorships[5].author.display_name | Haiyun Shi |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I3045169105 |
| authorships[5].affiliations[0].raw_affiliation_string | State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I3045169105 |
| authorships[5].affiliations[1].raw_affiliation_string | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| authorships[5].institutions[0].id | https://openalex.org/I3045169105 |
| authorships[5].institutions[0].ror | https://ror.org/049tv2d57 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I3045169105 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Southern University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Haiyun Shi |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China, State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating the Applicability of NDVI and SIF to Gross Primary Productivity and Grain-Yield Monitoring in China |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2161028385, https://openalex.org/W2747712390, https://openalex.org/W4290755138, https://openalex.org/W2021379394, https://openalex.org/W2793924568, https://openalex.org/W2782837855, https://openalex.org/W2024772260, https://openalex.org/W4206212372, https://openalex.org/W3012814782, https://openalex.org/W1801365375 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14133237 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14133237 |
| primary_location.id | doi:10.3390/rs14133237 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/13/3237/pdf?version=1657080720 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14133237 |
| publication_date | 2022-07-05 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2995089490, https://openalex.org/W2165037481, https://openalex.org/W2048839121, https://openalex.org/W2956697767, https://openalex.org/W3039284495, https://openalex.org/W2965731873, https://openalex.org/W2810045082, https://openalex.org/W2895688795, https://openalex.org/W2137027108, https://openalex.org/W2167422772, https://openalex.org/W2899595993, https://openalex.org/W3042372905, https://openalex.org/W6783026883, https://openalex.org/W2919558946, https://openalex.org/W3126663880, https://openalex.org/W2767383015, https://openalex.org/W2971093460, https://openalex.org/W3113416193, https://openalex.org/W2910489728, https://openalex.org/W1995091554, https://openalex.org/W3081362132, https://openalex.org/W2531882454, https://openalex.org/W2038227312, https://openalex.org/W2783437530, https://openalex.org/W2014927013, https://openalex.org/W2803582071, https://openalex.org/W3097088508, https://openalex.org/W3095165220, https://openalex.org/W3005142463, https://openalex.org/W2809772488, https://openalex.org/W3125182026, https://openalex.org/W2945782047, https://openalex.org/W2563455842, https://openalex.org/W2980759614, https://openalex.org/W3125866485, https://openalex.org/W2999121894, https://openalex.org/W3025042008, https://openalex.org/W1989850534, https://openalex.org/W2168872978, https://openalex.org/W2726364032, https://openalex.org/W2998139469, https://openalex.org/W3126673397, https://openalex.org/W3161729286, https://openalex.org/W2990292985, https://openalex.org/W2902212390, https://openalex.org/W1970822048, https://openalex.org/W3084154357, https://openalex.org/W2015177697, https://openalex.org/W1967395374, https://openalex.org/W2003326025, https://openalex.org/W1978020971, https://openalex.org/W2921646734, https://openalex.org/W2804276383, https://openalex.org/W2955287027, https://openalex.org/W1994240964, https://openalex.org/W2990720607, https://openalex.org/W3026556562, https://openalex.org/W2102127703, https://openalex.org/W3087027134 |
| referenced_works_count | 59 |
| abstract_inverted_index.a | 1, 50, 123, 130 |
| abstract_inverted_index.To | 191 |
| abstract_inverted_index.as | 193 |
| abstract_inverted_index.by | 90 |
| abstract_inverted_index.in | 15, 76, 87, 94, 114, 129, 211 |
| abstract_inverted_index.is | 202, 215 |
| abstract_inverted_index.of | 83, 119, 133, 181, 197 |
| abstract_inverted_index.on | 183 |
| abstract_inverted_index.to | 218 |
| abstract_inverted_index.For | 174 |
| abstract_inverted_index.GPP | 166, 184, 219 |
| abstract_inverted_index.SIF | 86, 141, 159, 176, 200, 204 |
| abstract_inverted_index.The | 102, 136 |
| abstract_inverted_index.all | 145 |
| abstract_inverted_index.and | 8, 17, 60, 75, 79, 85, 99, 105, 117, 140, 152, 167, 185, 220 |
| abstract_inverted_index.for | 18, 28, 41, 144 |
| abstract_inverted_index.had | 160 |
| abstract_inverted_index.has | 38 |
| abstract_inverted_index.key | 2 |
| abstract_inverted_index.our | 19 |
| abstract_inverted_index.the | 6, 9, 33, 47, 61, 81, 120, 165, 179, 194, 198 |
| abstract_inverted_index.was | 126 |
| abstract_inverted_index.(the | 54, 65 |
| abstract_inverted_index.NDVI | 84, 139 |
| abstract_inverted_index.This | 44 |
| abstract_inverted_index.also | 127 |
| abstract_inverted_index.data | 201 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.part | 118, 132 |
| abstract_inverted_index.some | 161 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.than | 189 |
| abstract_inverted_index.that | 214 |
| abstract_inverted_index.were | 111, 142 |
| abstract_inverted_index.when | 163 |
| abstract_inverted_index.wide | 209 |
| abstract_inverted_index.will | 205 |
| abstract_inverted_index.with | 157 |
| abstract_inverted_index.(GPP) | 98 |
| abstract_inverted_index.(SIF) | 58 |
| abstract_inverted_index.Index | 69 |
| abstract_inverted_index.NDVI, | 158 |
| abstract_inverted_index.NDVI. | 190 |
| abstract_inverted_index.among | 71, 170 |
| abstract_inverted_index.cases | 89 |
| abstract_inverted_index.could | 177 |
| abstract_inverted_index.cover | 104 |
| abstract_inverted_index.grain | 168, 186 |
| abstract_inverted_index.gross | 95 |
| abstract_inverted_index.index | 53, 64 |
| abstract_inverted_index.small | 131 |
| abstract_inverted_index.study | 45 |
| abstract_inverted_index.their | 92 |
| abstract_inverted_index.trend | 125 |
| abstract_inverted_index.types | 74, 147 |
| abstract_inverted_index.which | 110 |
| abstract_inverted_index.China. | 135 |
| abstract_inverted_index.become | 26, 39 |
| abstract_inverted_index.better | 188 |
| abstract_inverted_index.except | 148 |
| abstract_inverted_index.extent | 196 |
| abstract_inverted_index.mainly | 112 |
| abstract_inverted_index.nature | 16 |
| abstract_inverted_index.showed | 107 |
| abstract_inverted_index.strong | 143 |
| abstract_inverted_index.types. | 173 |
| abstract_inverted_index.water, | 5 |
| abstract_inverted_index.yields | 169, 187 |
| abstract_inverted_index.(NDVI)) | 70 |
| abstract_inverted_index.between | 49, 138 |
| abstract_inverted_index.capture | 178 |
| abstract_inverted_index.closely | 216 |
| abstract_inverted_index.correct | 34 |
| abstract_inverted_index.drought | 182 |
| abstract_inverted_index.effects | 180 |
| abstract_inverted_index.forests | 151 |
| abstract_inverted_index.ground, | 10 |
| abstract_inverted_index.linking | 4 |
| abstract_inverted_index.perform | 207 |
| abstract_inverted_index.primary | 96 |
| abstract_inverted_index.related | 217 |
| abstract_inverted_index.seasons | 78 |
| abstract_inverted_index.trends, | 109 |
| abstract_inverted_index.Although | 21 |
| abstract_inverted_index.Compared | 156 |
| abstract_inverted_index.Plateau; | 122 |
| abstract_inverted_index.Xinjiang | 116 |
| abstract_inverted_index.activity | 52 |
| abstract_inverted_index.example, | 175 |
| abstract_inverted_index.explored | 80 |
| abstract_inverted_index.forests. | 155 |
| abstract_inverted_index.northern | 115 |
| abstract_inverted_index.performs | 11 |
| abstract_inverted_index.research | 213 |
| abstract_inverted_index.temporal | 195 |
| abstract_inverted_index.Northeast | 134 |
| abstract_inverted_index.available | 199 |
| abstract_inverted_index.broadleaf | 154 |
| abstract_inverted_index.certainly | 206 |
| abstract_inverted_index.comparing | 91 |
| abstract_inverted_index.different | 72, 77, 88, 171 |
| abstract_inverted_index.dynamics, | 31 |
| abstract_inverted_index.evergreen | 149, 153 |
| abstract_inverted_index.extended, | 203 |
| abstract_inverted_index.extremely | 12 |
| abstract_inverted_index.functions | 14 |
| abstract_inverted_index.important | 13, 27 |
| abstract_inverted_index.indicator | 37 |
| abstract_inverted_index.paramount | 40 |
| abstract_inverted_index.selecting | 32 |
| abstract_inverted_index.Difference | 67 |
| abstract_inverted_index.Normalized | 66 |
| abstract_inverted_index.Vegetation | 68 |
| abstract_inverted_index.advantages | 162 |
| abstract_inverted_index.decreasing | 108, 124 |
| abstract_inverted_index.existence. | 20 |
| abstract_inverted_index.identified | 128 |
| abstract_inverted_index.indicator) | 59 |
| abstract_inverted_index.land-cover | 73, 146, 172 |
| abstract_inverted_index.monitoring | 29, 164 |
| abstract_inverted_index.needleleaf | 150 |
| abstract_inverted_index.production | 97 |
| abstract_inverted_index.summarize, | 192 |
| abstract_inverted_index.vegetation | 30, 36, 63, 103 |
| abstract_inverted_index.Vegetation, | 0 |
| abstract_inverted_index.atmosphere, | 7 |
| abstract_inverted_index.chlorophyll | 56 |
| abstract_inverted_index.grain-yield | 221 |
| abstract_inverted_index.monitoring. | 222 |
| abstract_inverted_index.traditional | 62 |
| abstract_inverted_index.applications | 210 |
| abstract_inverted_index.concentrated | 113 |
| abstract_inverted_index.correlations | 137 |
| abstract_inverted_index.fluorescence | 57 |
| abstract_inverted_index.increasingly | 208 |
| abstract_inverted_index.intermediary | 3 |
| abstract_inverted_index.investigated | 46 |
| abstract_inverted_index.performances | 93 |
| abstract_inverted_index.technologies | 24 |
| abstract_inverted_index.applicability | 82 |
| abstract_inverted_index.applications. | 101 |
| abstract_inverted_index.consistencies | 48 |
| abstract_inverted_index.solar-induced | 55 |
| abstract_inverted_index.photosynthesis | 106 |
| abstract_inverted_index.photosynthetic | 51 |
| abstract_inverted_index.remote-sensing | 23, 35 |
| abstract_inverted_index.Qinghai–Tibet | 121 |
| abstract_inverted_index.investigations. | 43 |
| abstract_inverted_index.satellite-based | 22 |
| abstract_inverted_index.grain-yield-monitoring | 100 |
| abstract_inverted_index.agricultural-management | 212 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5084054659 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I3045169105 |
| citation_normalized_percentile.value | 0.89575442 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |