Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.22065/jsce.2017.44332
In the last decade, conventional materials such as steel and concrete are being replaced by fiber reinforced polymer (FRP) materials for the strengthening of concrete structures. Among the strengthening techniques based on Fiber Reinforced Polymer composites, the use of near-surface mounted (NSM) FRP rods is emerging as a promising technology for increasing flexural and shear strength of deficient concrete, masonry and timber members. An artificial neural network is an information processing tool that is inspired by the way biological nervous systems (such as the brain) process the information. The key element of this tool is the novel structure of the information processing system. In engineering applications, a neural network can be a vector mapper which maps an input vector to an output one. In the present study, a new approach is developed to predict the behavior of strengthened concrete beam using a large number of experimental data by applying artificial neural networks. Having parameters used as input nodes in ANN modeling such as elastic modulus of the FRP reinforcement, the ratio of the steel longitudinal reinforcement, dimensions of the beam section, the ratio of the NSM-FRP reinforcement and characteristics of concrete, the output node was the flexural strength of beams. The idealized neural network was employed to generate empirical charts and equations to be used in design. The aim of this study is to investigate the behavior of strengthened RC beam using artificial neural networks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doaj.org/article/6805d54c00f14fad99032372979b04f9
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2708315794
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2708315794Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22065/jsce.2017.44332Digital Object Identifier
- Title
-
Estimating the behavior of RC beams strengthened with NSM system using artificial neural networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-12-01Full publication date if available
- Authors
-
Seyed Rohollah Hosseini Vaez, Hosein Naderpour, Mohammad Reza BaratiList of authors in order
- Landing page
-
https://doaj.org/article/6805d54c00f14fad99032372979b04f9Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doaj.org/article/6805d54c00f14fad99032372979b04f9Direct OA link when available
- Concepts
-
Artificial neural network, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2708315794 |
|---|---|
| doi | https://doi.org/10.22065/jsce.2017.44332 |
| ids.mag | 2708315794 |
| ids.openalex | https://openalex.org/W2708315794 |
| fwci | 0.0 |
| type | article |
| title | Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10479 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9987999796867371 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Structural Behavior of Reinforced Concrete |
| topics[1].id | https://openalex.org/T10687 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9731000065803528 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Innovative concrete reinforcement materials |
| topics[2].id | https://openalex.org/T11850 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9696000218391418 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Concrete Corrosion and Durability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50644808 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7860528826713562 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[0].display_name | Artificial neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.40738362073898315 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3852249085903168 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[0].score | 0.7860528826713562 |
| keywords[0].display_name | Artificial neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.40738362073898315 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3852249085903168 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:doaj.org/article:6805d54c00f14fad99032372979b04f9 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401280 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-sa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | Journal of Structural and Construction Engineering, Vol 4, Iss 4, Pp 16-28 (2017) |
| locations[0].landing_page_url | https://doaj.org/article/6805d54c00f14fad99032372979b04f9 |
| indexed_in | doaj |
| authorships[0].author.id | https://openalex.org/A5112641978 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Seyed Rohollah Hosseini Vaez |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184468904 |
| authorships[0].affiliations[0].raw_affiliation_string | Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I184468904 |
| authorships[0].institutions[0].ror | https://ror.org/03ddeer04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I184468904 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | University of Qom |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Seyed Rohollah Hosseini Vaez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Assistant Professor, Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran |
| authorships[1].author.id | https://openalex.org/A5091515460 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4179-7816 |
| authorships[1].author.display_name | Hosein Naderpour |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I928334797 |
| authorships[1].affiliations[0].raw_affiliation_string | Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran. |
| authorships[1].institutions[0].id | https://openalex.org/I928334797 |
| authorships[1].institutions[0].ror | https://ror.org/029gksw03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I928334797 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Semnan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hosein Naderpour |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Associate Professor, Faculty of Civil Engineering, Semnan University, Semnan, Iran. |
| authorships[2].author.id | https://openalex.org/A5077965744 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0573-7928 |
| authorships[2].author.display_name | Mohammad Reza Barati |
| authorships[2].countries | IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I184468904 |
| authorships[2].affiliations[0].raw_affiliation_string | MSc Student, Department of Civil Engineering, University of Qom, Qom, Iran |
| authorships[2].institutions[0].id | https://openalex.org/I184468904 |
| authorships[2].institutions[0].ror | https://ror.org/03ddeer04 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I184468904 |
| authorships[2].institutions[0].country_code | IR |
| authorships[2].institutions[0].display_name | University of Qom |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Mohammad Barati |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | MSc Student, Department of Civil Engineering, University of Qom, Qom, Iran |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doaj.org/article/6805d54c00f14fad99032372979b04f9 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimating the behavior of RC beams strengthened with NSM system using artificial neural networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10479 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9987999796867371 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Structural Behavior of Reinforced Concrete |
| related_works | https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2130043461, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:doaj.org/article:6805d54c00f14fad99032372979b04f9 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401280 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-sa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-sa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Journal of Structural and Construction Engineering, Vol 4, Iss 4, Pp 16-28 (2017) |
| best_oa_location.landing_page_url | https://doaj.org/article/6805d54c00f14fad99032372979b04f9 |
| primary_location.id | pmh:oai:doaj.org/article:6805d54c00f14fad99032372979b04f9 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401280 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-sa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-sa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | Journal of Structural and Construction Engineering, Vol 4, Iss 4, Pp 16-28 (2017) |
| primary_location.landing_page_url | https://doaj.org/article/6805d54c00f14fad99032372979b04f9 |
| publication_date | 2017-12-01 |
| publication_year | 2017 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 47, 106, 111, 127, 141 |
| abstract_inverted_index.An | 63 |
| abstract_inverted_index.In | 0, 103, 123 |
| abstract_inverted_index.RC | 229 |
| abstract_inverted_index.an | 68, 116, 120 |
| abstract_inverted_index.as | 7, 46, 82, 155, 162 |
| abstract_inverted_index.be | 110, 213 |
| abstract_inverted_index.by | 14, 75, 147 |
| abstract_inverted_index.in | 158, 215 |
| abstract_inverted_index.is | 44, 67, 73, 94, 130, 222 |
| abstract_inverted_index.of | 23, 38, 56, 91, 98, 136, 144, 165, 171, 177, 183, 189, 198, 219, 227 |
| abstract_inverted_index.on | 31 |
| abstract_inverted_index.to | 119, 132, 206, 212, 223 |
| abstract_inverted_index.ANN | 159 |
| abstract_inverted_index.FRP | 42, 167 |
| abstract_inverted_index.The | 88, 200, 217 |
| abstract_inverted_index.aim | 218 |
| abstract_inverted_index.and | 9, 53, 60, 187, 210 |
| abstract_inverted_index.are | 11 |
| abstract_inverted_index.can | 109 |
| abstract_inverted_index.for | 20, 50 |
| abstract_inverted_index.key | 89 |
| abstract_inverted_index.new | 128 |
| abstract_inverted_index.the | 1, 21, 27, 36, 76, 83, 86, 95, 99, 124, 134, 166, 169, 172, 178, 181, 184, 191, 195, 225 |
| abstract_inverted_index.use | 37 |
| abstract_inverted_index.was | 194, 204 |
| abstract_inverted_index.way | 77 |
| abstract_inverted_index.beam | 139, 179, 230 |
| abstract_inverted_index.data | 146 |
| abstract_inverted_index.last | 2 |
| abstract_inverted_index.maps | 115 |
| abstract_inverted_index.node | 193 |
| abstract_inverted_index.one. | 122 |
| abstract_inverted_index.rods | 43 |
| abstract_inverted_index.such | 6, 161 |
| abstract_inverted_index.that | 72 |
| abstract_inverted_index.this | 92, 220 |
| abstract_inverted_index.tool | 71, 93 |
| abstract_inverted_index.used | 154, 214 |
| abstract_inverted_index.(FRP) | 18 |
| abstract_inverted_index.(NSM) | 41 |
| abstract_inverted_index.(such | 81 |
| abstract_inverted_index.Among | 26 |
| abstract_inverted_index.Fiber | 32 |
| abstract_inverted_index.based | 30 |
| abstract_inverted_index.being | 12 |
| abstract_inverted_index.fiber | 15 |
| abstract_inverted_index.input | 117, 156 |
| abstract_inverted_index.large | 142 |
| abstract_inverted_index.nodes | 157 |
| abstract_inverted_index.novel | 96 |
| abstract_inverted_index.ratio | 170, 182 |
| abstract_inverted_index.shear | 54 |
| abstract_inverted_index.steel | 8, 173 |
| abstract_inverted_index.study | 221 |
| abstract_inverted_index.using | 140, 231 |
| abstract_inverted_index.which | 114 |
| abstract_inverted_index.Having | 152 |
| abstract_inverted_index.beams. | 199 |
| abstract_inverted_index.brain) | 84 |
| abstract_inverted_index.charts | 209 |
| abstract_inverted_index.mapper | 113 |
| abstract_inverted_index.neural | 65, 107, 150, 202, 233 |
| abstract_inverted_index.number | 143 |
| abstract_inverted_index.output | 121, 192 |
| abstract_inverted_index.study, | 126 |
| abstract_inverted_index.timber | 61 |
| abstract_inverted_index.vector | 112, 118 |
| abstract_inverted_index.NSM-FRP | 185 |
| abstract_inverted_index.Polymer | 34 |
| abstract_inverted_index.decade, | 3 |
| abstract_inverted_index.design. | 216 |
| abstract_inverted_index.elastic | 163 |
| abstract_inverted_index.element | 90 |
| abstract_inverted_index.masonry | 59 |
| abstract_inverted_index.modulus | 164 |
| abstract_inverted_index.mounted | 40 |
| abstract_inverted_index.nervous | 79 |
| abstract_inverted_index.network | 66, 108, 203 |
| abstract_inverted_index.polymer | 17 |
| abstract_inverted_index.predict | 133 |
| abstract_inverted_index.present | 125 |
| abstract_inverted_index.process | 85 |
| abstract_inverted_index.system. | 102 |
| abstract_inverted_index.systems | 80 |
| abstract_inverted_index.applying | 148 |
| abstract_inverted_index.approach | 129 |
| abstract_inverted_index.behavior | 135, 226 |
| abstract_inverted_index.concrete | 10, 24, 138 |
| abstract_inverted_index.emerging | 45 |
| abstract_inverted_index.employed | 205 |
| abstract_inverted_index.flexural | 52, 196 |
| abstract_inverted_index.generate | 207 |
| abstract_inverted_index.inspired | 74 |
| abstract_inverted_index.members. | 62 |
| abstract_inverted_index.modeling | 160 |
| abstract_inverted_index.replaced | 13 |
| abstract_inverted_index.section, | 180 |
| abstract_inverted_index.strength | 55, 197 |
| abstract_inverted_index.concrete, | 58, 190 |
| abstract_inverted_index.deficient | 57 |
| abstract_inverted_index.developed | 131 |
| abstract_inverted_index.empirical | 208 |
| abstract_inverted_index.equations | 211 |
| abstract_inverted_index.idealized | 201 |
| abstract_inverted_index.materials | 5, 19 |
| abstract_inverted_index.networks. | 151, 234 |
| abstract_inverted_index.promising | 48 |
| abstract_inverted_index.structure | 97 |
| abstract_inverted_index.Reinforced | 33 |
| abstract_inverted_index.artificial | 64, 149, 232 |
| abstract_inverted_index.biological | 78 |
| abstract_inverted_index.dimensions | 176 |
| abstract_inverted_index.increasing | 51 |
| abstract_inverted_index.parameters | 153 |
| abstract_inverted_index.processing | 70, 101 |
| abstract_inverted_index.reinforced | 16 |
| abstract_inverted_index.techniques | 29 |
| abstract_inverted_index.technology | 49 |
| abstract_inverted_index.composites, | 35 |
| abstract_inverted_index.engineering | 104 |
| abstract_inverted_index.information | 69, 100 |
| abstract_inverted_index.investigate | 224 |
| abstract_inverted_index.structures. | 25 |
| abstract_inverted_index.conventional | 4 |
| abstract_inverted_index.experimental | 145 |
| abstract_inverted_index.information. | 87 |
| abstract_inverted_index.longitudinal | 174 |
| abstract_inverted_index.near-surface | 39 |
| abstract_inverted_index.strengthened | 137, 228 |
| abstract_inverted_index.applications, | 105 |
| abstract_inverted_index.reinforcement | 186 |
| abstract_inverted_index.strengthening | 22, 28 |
| abstract_inverted_index.reinforcement, | 168, 175 |
| abstract_inverted_index.characteristics | 188 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.08714056 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |