Estimating the ultrasound attenuation coefficient using convolutional neural networks -- a feasibility study Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.09533
Attenuation coefficient (AC) is a fundamental measure of tissue acoustical properties, which can be used in medical diagnostics. In this work, we investigate the feasibility of using convolutional neural networks (CNNs) to directly estimate AC from radio-frequency (RF) ultrasound signals. To develop the CNNs we used RF signals collected from tissue mimicking numerical phantoms for the AC values in a range from 0.1 to 1.5 dB/(MHz*cm). The models were trained based on 1-D patches of RF data. We obtained mean absolute AC estimation errors of 0.08, 0.12, 0.20, 0.25 for the patch lengths: 10 mm, 5 mm, 2 mm and 1 mm, respectively. We explain the performance of the model by visualizing the frequency content associated with convolutional filters. Our study presents that the AC can be calculated using deep learning, and the weights of the CNNs can have physical interpretation.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.09533
- https://arxiv.org/pdf/2205.09533
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281255691
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281255691Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.09533Digital Object Identifier
- Title
-
Estimating the ultrasound attenuation coefficient using convolutional neural networks -- a feasibility studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-19Full publication date if available
- Authors
-
Piotr Jarosik, Michał Byra, Marcin Lewandowski, Ziemowit KlimondaList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.09533Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.09533Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.09533Direct OA link when available
- Concepts
-
Convolutional neural network, Attenuation, Attenuation coefficient, Ultrasound, Medical ultrasound, Radio frequency, Computer science, Correction for attenuation, Range (aeronautics), Acoustics, Artificial intelligence, Pattern recognition (psychology), Physics, Materials science, Optics, Telecommunications, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281255691 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.09533 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.09533 |
| ids.openalex | https://openalex.org/W4281255691 |
| fwci | |
| type | preprint |
| title | Estimating the ultrasound attenuation coefficient using convolutional neural networks -- a feasibility study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10727 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9976000189781189 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Ultrasound Imaging and Elastography |
| topics[1].id | https://openalex.org/T10958 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Ultrasound and Hyperthermia Applications |
| topics[2].id | https://openalex.org/T11738 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9840999841690063 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2706 |
| topics[2].subfield.display_name | Critical Care and Intensive Care Medicine |
| topics[2].display_name | Ultrasound in Clinical Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8118594884872437 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C184652730 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7954086065292358 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2357982 |
| concepts[1].display_name | Attenuation |
| concepts[2].id | https://openalex.org/C159774933 |
| concepts[2].level | 2 |
| concepts[2].score | 0.583556592464447 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q902086 |
| concepts[2].display_name | Attenuation coefficient |
| concepts[3].id | https://openalex.org/C143753070 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5657078623771667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[3].display_name | Ultrasound |
| concepts[4].id | https://openalex.org/C2992165143 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5326473712921143 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q234904 |
| concepts[4].display_name | Medical ultrasound |
| concepts[5].id | https://openalex.org/C74064498 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5192134976387024 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3396184 |
| concepts[5].display_name | Radio frequency |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.46592944860458374 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C123688308 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4433121085166931 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7309537 |
| concepts[7].display_name | Correction for attenuation |
| concepts[8].id | https://openalex.org/C204323151 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42328178882598877 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[8].display_name | Range (aeronautics) |
| concepts[9].id | https://openalex.org/C24890656 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4195711016654968 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[9].display_name | Acoustics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36552944779396057 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3468497693538666 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.31904473900794983 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.29619383811950684 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.22154685854911804 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.12668120861053467 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.8118594884872437 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/attenuation |
| keywords[1].score | 0.7954086065292358 |
| keywords[1].display_name | Attenuation |
| keywords[2].id | https://openalex.org/keywords/attenuation-coefficient |
| keywords[2].score | 0.583556592464447 |
| keywords[2].display_name | Attenuation coefficient |
| keywords[3].id | https://openalex.org/keywords/ultrasound |
| keywords[3].score | 0.5657078623771667 |
| keywords[3].display_name | Ultrasound |
| keywords[4].id | https://openalex.org/keywords/medical-ultrasound |
| keywords[4].score | 0.5326473712921143 |
| keywords[4].display_name | Medical ultrasound |
| keywords[5].id | https://openalex.org/keywords/radio-frequency |
| keywords[5].score | 0.5192134976387024 |
| keywords[5].display_name | Radio frequency |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.46592944860458374 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/correction-for-attenuation |
| keywords[7].score | 0.4433121085166931 |
| keywords[7].display_name | Correction for attenuation |
| keywords[8].id | https://openalex.org/keywords/range |
| keywords[8].score | 0.42328178882598877 |
| keywords[8].display_name | Range (aeronautics) |
| keywords[9].id | https://openalex.org/keywords/acoustics |
| keywords[9].score | 0.4195711016654968 |
| keywords[9].display_name | Acoustics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.36552944779396057 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.3468497693538666 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/physics |
| keywords[12].score | 0.31904473900794983 |
| keywords[12].display_name | Physics |
| keywords[13].id | https://openalex.org/keywords/materials-science |
| keywords[13].score | 0.29619383811950684 |
| keywords[13].display_name | Materials science |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.22154685854911804 |
| keywords[14].display_name | Optics |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.12668120861053467 |
| keywords[15].display_name | Telecommunications |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.09533 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.09533 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.09533 |
| locations[1].id | doi:10.48550/arxiv.2205.09533 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.09533 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5016281068 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5198-5012 |
| authorships[0].author.display_name | Piotr Jarosik |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jarosik, Piotr |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5084262755 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5759-2516 |
| authorships[1].author.display_name | Michał Byra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Byra, Michal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014928358 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8668-8368 |
| authorships[2].author.display_name | Marcin Lewandowski |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lewandowski, Marcin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5047883236 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1695-7096 |
| authorships[3].author.display_name | Ziemowit Klimonda |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Klimonda, Ziemowit |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.09533 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-23T00:00:00 |
| display_name | Estimating the ultrasound attenuation coefficient using convolutional neural networks -- a feasibility study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10727 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9976000189781189 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Ultrasound Imaging and Elastography |
| related_works | https://openalex.org/W2334000142, https://openalex.org/W2919843379, https://openalex.org/W2534086599, https://openalex.org/W2288985746, https://openalex.org/W167525318, https://openalex.org/W1969031584, https://openalex.org/W2539843374, https://openalex.org/W2316653139, https://openalex.org/W1972843425, https://openalex.org/W2539802858 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.09533 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.09533 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.09533 |
| primary_location.id | pmh:oai:arXiv.org:2205.09533 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.09533 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.09533 |
| publication_date | 2022-05-19 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 100 |
| abstract_inverted_index.2 | 97 |
| abstract_inverted_index.5 | 95 |
| abstract_inverted_index.a | 4, 59 |
| abstract_inverted_index.10 | 93 |
| abstract_inverted_index.AC | 34, 56, 81, 124 |
| abstract_inverted_index.In | 18 |
| abstract_inverted_index.RF | 46, 75 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.We | 77, 103 |
| abstract_inverted_index.be | 13, 126 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 15, 58 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.mm | 98 |
| abstract_inverted_index.of | 7, 25, 74, 84, 107, 134 |
| abstract_inverted_index.on | 71 |
| abstract_inverted_index.to | 31, 63 |
| abstract_inverted_index.we | 21, 44 |
| abstract_inverted_index.0.1 | 62 |
| abstract_inverted_index.1-D | 72 |
| abstract_inverted_index.1.5 | 64 |
| abstract_inverted_index.Our | 119 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.and | 99, 131 |
| abstract_inverted_index.can | 12, 125, 137 |
| abstract_inverted_index.for | 54, 89 |
| abstract_inverted_index.mm, | 94, 96, 101 |
| abstract_inverted_index.the | 23, 42, 55, 90, 105, 108, 112, 123, 132, 135 |
| abstract_inverted_index.(AC) | 2 |
| abstract_inverted_index.(RF) | 37 |
| abstract_inverted_index.0.25 | 88 |
| abstract_inverted_index.CNNs | 43, 136 |
| abstract_inverted_index.deep | 129 |
| abstract_inverted_index.from | 35, 49, 61 |
| abstract_inverted_index.have | 138 |
| abstract_inverted_index.mean | 79 |
| abstract_inverted_index.that | 122 |
| abstract_inverted_index.this | 19 |
| abstract_inverted_index.used | 14, 45 |
| abstract_inverted_index.were | 68 |
| abstract_inverted_index.with | 116 |
| abstract_inverted_index.0.08, | 85 |
| abstract_inverted_index.0.12, | 86 |
| abstract_inverted_index.0.20, | 87 |
| abstract_inverted_index.based | 70 |
| abstract_inverted_index.data. | 76 |
| abstract_inverted_index.model | 109 |
| abstract_inverted_index.patch | 91 |
| abstract_inverted_index.range | 60 |
| abstract_inverted_index.study | 120 |
| abstract_inverted_index.using | 26, 128 |
| abstract_inverted_index.which | 11 |
| abstract_inverted_index.work, | 20 |
| abstract_inverted_index.(CNNs) | 30 |
| abstract_inverted_index.errors | 83 |
| abstract_inverted_index.models | 67 |
| abstract_inverted_index.neural | 28 |
| abstract_inverted_index.tissue | 8, 50 |
| abstract_inverted_index.values | 57 |
| abstract_inverted_index.content | 114 |
| abstract_inverted_index.develop | 41 |
| abstract_inverted_index.explain | 104 |
| abstract_inverted_index.measure | 6 |
| abstract_inverted_index.medical | 16 |
| abstract_inverted_index.patches | 73 |
| abstract_inverted_index.signals | 47 |
| abstract_inverted_index.trained | 69 |
| abstract_inverted_index.weights | 133 |
| abstract_inverted_index.absolute | 80 |
| abstract_inverted_index.directly | 32 |
| abstract_inverted_index.estimate | 33 |
| abstract_inverted_index.filters. | 118 |
| abstract_inverted_index.lengths: | 92 |
| abstract_inverted_index.networks | 29 |
| abstract_inverted_index.obtained | 78 |
| abstract_inverted_index.phantoms | 53 |
| abstract_inverted_index.physical | 139 |
| abstract_inverted_index.presents | 121 |
| abstract_inverted_index.signals. | 39 |
| abstract_inverted_index.collected | 48 |
| abstract_inverted_index.frequency | 113 |
| abstract_inverted_index.learning, | 130 |
| abstract_inverted_index.mimicking | 51 |
| abstract_inverted_index.numerical | 52 |
| abstract_inverted_index.acoustical | 9 |
| abstract_inverted_index.associated | 115 |
| abstract_inverted_index.calculated | 127 |
| abstract_inverted_index.estimation | 82 |
| abstract_inverted_index.ultrasound | 38 |
| abstract_inverted_index.Attenuation | 0 |
| abstract_inverted_index.coefficient | 1 |
| abstract_inverted_index.feasibility | 24 |
| abstract_inverted_index.fundamental | 5 |
| abstract_inverted_index.investigate | 22 |
| abstract_inverted_index.performance | 106 |
| abstract_inverted_index.properties, | 10 |
| abstract_inverted_index.visualizing | 111 |
| abstract_inverted_index.dB/(MHz*cm). | 65 |
| abstract_inverted_index.diagnostics. | 17 |
| abstract_inverted_index.convolutional | 27, 117 |
| abstract_inverted_index.respectively. | 102 |
| abstract_inverted_index.interpretation. | 140 |
| abstract_inverted_index.radio-frequency | 36 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |