Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2007.04445
With the increasing adoption of electronic health records, there is an increasing interest in developing individualized treatment rules, which recommend treatments according to patients' characteristics, from large observational data. However, there is a lack of valid inference procedures for such rules developed from this type of data in the presence of high-dimensional covariates. In this work, we develop a penalized doubly robust method to estimate the optimal individualized treatment rule from high-dimensional data. We propose a split-and-pooled de-correlated score to construct hypothesis tests and confidence intervals. Our proposal utilizes the data splitting to conquer the slow convergence rate of nuisance parameter estimations, such as non-parametric methods for outcome regression or propensity models. We establish the limiting distributions of the split-and-pooled de-correlated score test and the corresponding one-step estimator in high-dimensional setting. Simulation and real data analysis are conducted to demonstrate the superiority of the proposed method.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://pubmed.ncbi.nlm.nih.gov/38098839
- OA Status
- green
- Cited By
- 1
- References
- 41
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3041514166
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3041514166Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2007.04445Digital Object Identifier
- Title
-
Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated scoreWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-08Full publication date if available
- Authors
-
Muxuan Liang, Young‐Geun Choi, Yang Ning, Maureen A. Smith, Ying‐Qi ZhaoList of authors in order
- Landing page
-
https://pubmed.ncbi.nlm.nih.gov/38098839Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2007.04445Direct OA link when available
- Concepts
-
Estimator, Observational study, Propensity score matching, Inference, Covariate, Confidence interval, Statistics, Econometrics, Computer science, Causal inference, Statistical inference, Data mining, Nuisance parameter, Mathematics, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
41Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3041514166 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2007.04445 |
| ids.doi | https://doi.org/10.48550/arxiv.2007.04445 |
| ids.mag | 3041514166 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38098839 |
| ids.openalex | https://openalex.org/W3041514166 |
| fwci | |
| type | preprint |
| title | Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score |
| biblio.issue | |
| biblio.volume | 23 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T10845 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Causal Inference Techniques |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9616000056266785 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6924230456352234 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C23131810 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6875357627868652 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[1].display_name | Observational study |
| concepts[2].id | https://openalex.org/C17923572 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5655975341796875 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7250160 |
| concepts[2].display_name | Propensity score matching |
| concepts[3].id | https://openalex.org/C2776214188 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5637722611427307 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[3].display_name | Inference |
| concepts[4].id | https://openalex.org/C119043178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5463486313819885 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[4].display_name | Covariate |
| concepts[5].id | https://openalex.org/C44249647 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49607428908348083 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[5].display_name | Confidence interval |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47546786069869995 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C149782125 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45118197798728943 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[7].display_name | Econometrics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4465232491493225 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C158600405 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4234831929206848 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5054566 |
| concepts[9].display_name | Causal inference |
| concepts[10].id | https://openalex.org/C134261354 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42228126525878906 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[10].display_name | Statistical inference |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4140360355377197 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C194531419 |
| concepts[12].level | 3 |
| concepts[12].score | 0.41311269998550415 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17104825 |
| concepts[12].display_name | Nuisance parameter |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.40780454874038696 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23288345336914062 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.6924230456352234 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/observational-study |
| keywords[1].score | 0.6875357627868652 |
| keywords[1].display_name | Observational study |
| keywords[2].id | https://openalex.org/keywords/propensity-score-matching |
| keywords[2].score | 0.5655975341796875 |
| keywords[2].display_name | Propensity score matching |
| keywords[3].id | https://openalex.org/keywords/inference |
| keywords[3].score | 0.5637722611427307 |
| keywords[3].display_name | Inference |
| keywords[4].id | https://openalex.org/keywords/covariate |
| keywords[4].score | 0.5463486313819885 |
| keywords[4].display_name | Covariate |
| keywords[5].id | https://openalex.org/keywords/confidence-interval |
| keywords[5].score | 0.49607428908348083 |
| keywords[5].display_name | Confidence interval |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.47546786069869995 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/econometrics |
| keywords[7].score | 0.45118197798728943 |
| keywords[7].display_name | Econometrics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.4465232491493225 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/causal-inference |
| keywords[9].score | 0.4234831929206848 |
| keywords[9].display_name | Causal inference |
| keywords[10].id | https://openalex.org/keywords/statistical-inference |
| keywords[10].score | 0.42228126525878906 |
| keywords[10].display_name | Statistical inference |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.4140360355377197 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/nuisance-parameter |
| keywords[12].score | 0.41311269998550415 |
| keywords[12].display_name | Nuisance parameter |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.40780454874038696 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.23288345336914062 |
| keywords[14].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmid:38098839 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4306525036 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | PubMed |
| locations[0].source.host_organization | https://openalex.org/I1299303238 |
| locations[0].source.host_organization_name | National Institutes of Health |
| locations[0].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of machine learning research : JMLR |
| locations[0].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38098839 |
| locations[1].id | pmh:oai:arXiv.org:2007.04445 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2007.04445 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2007.04445 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10720606 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10720606/pdf/nihms-1949967.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Mach Learn Res |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10720606 |
| locations[3].id | doi:10.48550/arxiv.2007.04445 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400194 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | arXiv (Cornell University) |
| locations[3].source.host_organization | https://openalex.org/I205783295 |
| locations[3].source.host_organization_name | Cornell University |
| locations[3].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://doi.org/10.48550/arxiv.2007.04445 |
| indexed_in | arxiv, datacite, pubmed |
| authorships[0].author.id | https://openalex.org/A5084404451 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1351-7928 |
| authorships[0].author.display_name | Muxuan Liang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, University of Florida, Gainesville, Florida 32611, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I33213144 |
| authorships[0].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Florida |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muxuan Liang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, University of Florida, Gainesville, Florida 32611, USA. |
| authorships[1].author.id | https://openalex.org/A5087399416 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3733-5421 |
| authorships[1].author.display_name | Young‐Geun Choi |
| authorships[1].countries | KR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I31766871 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Sookmyung Women's University, Seoul 04310, Korea. |
| authorships[1].institutions[0].id | https://openalex.org/I31766871 |
| authorships[1].institutions[0].ror | https://ror.org/00vvvt117 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I31766871 |
| authorships[1].institutions[0].country_code | KR |
| authorships[1].institutions[0].display_name | Sookmyung Women's University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Young-Geun Choi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Sookmyung Women's University, Seoul 04310, Korea. |
| authorships[2].author.id | https://openalex.org/A5070406375 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6877-9231 |
| authorships[2].author.display_name | Yang Ning |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistics and Data Science, Cornell University, Ithaca, Newyork 14853, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I205783295 |
| authorships[2].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Cornell University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang Ning |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistics and Data Science, Cornell University, Ithaca, Newyork 14853, USA. |
| authorships[3].author.id | https://openalex.org/A5041375538 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4370-000X |
| authorships[3].author.display_name | Maureen A. Smith |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | Departments of Population Health and Family Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Maureen A Smith |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Departments of Population Health and Family Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. |
| authorships[4].author.id | https://openalex.org/A5050444279 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2851-2257 |
| authorships[4].author.display_name | Ying‐Qi Zhao |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210089486 |
| authorships[4].affiliations[0].raw_affiliation_string | Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. |
| authorships[4].institutions[0].id | https://openalex.org/I4210089486 |
| authorships[4].institutions[0].ror | https://ror.org/007ps6h72 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210089486 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Fred Hutch Cancer Center |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ying-Qi Zhao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2007.04445 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W2575790444, https://openalex.org/W3126830542, https://openalex.org/W2947954788, https://openalex.org/W4385077270, https://openalex.org/W4296363906, https://openalex.org/W4281756720, https://openalex.org/W4322505266, https://openalex.org/W4225280467, https://openalex.org/W2541915084, https://openalex.org/W304115605 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | pmh:oai:arXiv.org:2007.04445 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2007.04445 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2007.04445 |
| primary_location.id | pmid:38098839 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4306525036 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | PubMed |
| primary_location.source.host_organization | https://openalex.org/I1299303238 |
| primary_location.source.host_organization_name | National Institutes of Health |
| primary_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of machine learning research : JMLR |
| primary_location.landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38098839 |
| publication_date | 2020-07-08 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2808139858, https://openalex.org/W2002414568, https://openalex.org/W2809303897, https://openalex.org/W2964331163, https://openalex.org/W2291713832, https://openalex.org/W941378780, https://openalex.org/W2119318698, https://openalex.org/W2106298710, https://openalex.org/W1994857208, https://openalex.org/W2907213040, https://openalex.org/W2622003161, https://openalex.org/W2105780515, https://openalex.org/W2095296627, https://openalex.org/W3106017199, https://openalex.org/W2132917208, https://openalex.org/W2024307779, https://openalex.org/W1977085253, https://openalex.org/W2589009003, https://openalex.org/W2122664244, https://openalex.org/W2115098571, https://openalex.org/W2165612525, https://openalex.org/W2592187169, https://openalex.org/W1516659296, https://openalex.org/W2913863092, https://openalex.org/W1996851858, https://openalex.org/W2236852225, https://openalex.org/W3150893739, https://openalex.org/W1990892838, https://openalex.org/W2964244141, https://openalex.org/W2066153095, https://openalex.org/W2164092415, https://openalex.org/W2803956787, https://openalex.org/W3102942031, https://openalex.org/W2964270008, https://openalex.org/W2147403249, https://openalex.org/W2059101466, https://openalex.org/W2133593515, https://openalex.org/W2966650337, https://openalex.org/W2808057888, https://openalex.org/W2430959489, https://openalex.org/W2802230479 |
| referenced_works_count | 41 |
| abstract_inverted_index.a | 32, 58, 75 |
| abstract_inverted_index.In | 53 |
| abstract_inverted_index.We | 73, 112 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.in | 13, 47, 128 |
| abstract_inverted_index.is | 9, 31 |
| abstract_inverted_index.of | 4, 34, 45, 50, 98, 117, 142 |
| abstract_inverted_index.or | 109 |
| abstract_inverted_index.to | 22, 63, 79, 92, 138 |
| abstract_inverted_index.we | 56 |
| abstract_inverted_index.Our | 86 |
| abstract_inverted_index.and | 83, 123, 132 |
| abstract_inverted_index.are | 136 |
| abstract_inverted_index.for | 38, 106 |
| abstract_inverted_index.the | 1, 48, 65, 89, 94, 114, 118, 124, 140, 143 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.data | 46, 90, 134 |
| abstract_inverted_index.from | 25, 42, 70 |
| abstract_inverted_index.lack | 33 |
| abstract_inverted_index.rate | 97 |
| abstract_inverted_index.real | 133 |
| abstract_inverted_index.rule | 69 |
| abstract_inverted_index.slow | 95 |
| abstract_inverted_index.such | 39, 102 |
| abstract_inverted_index.test | 122 |
| abstract_inverted_index.this | 43, 54 |
| abstract_inverted_index.type | 44 |
| abstract_inverted_index.data. | 28, 72 |
| abstract_inverted_index.large | 26 |
| abstract_inverted_index.rules | 40 |
| abstract_inverted_index.score | 78, 121 |
| abstract_inverted_index.tests | 82 |
| abstract_inverted_index.there | 8, 30 |
| abstract_inverted_index.valid | 35 |
| abstract_inverted_index.which | 18 |
| abstract_inverted_index.work, | 55 |
| abstract_inverted_index.doubly | 60 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.method | 62 |
| abstract_inverted_index.robust | 61 |
| abstract_inverted_index.rules, | 17 |
| abstract_inverted_index.conquer | 93 |
| abstract_inverted_index.develop | 57 |
| abstract_inverted_index.method. | 145 |
| abstract_inverted_index.methods | 105 |
| abstract_inverted_index.models. | 111 |
| abstract_inverted_index.optimal | 66 |
| abstract_inverted_index.outcome | 107 |
| abstract_inverted_index.propose | 74 |
| abstract_inverted_index.However, | 29 |
| abstract_inverted_index.adoption | 3 |
| abstract_inverted_index.analysis | 135 |
| abstract_inverted_index.estimate | 64 |
| abstract_inverted_index.interest | 12 |
| abstract_inverted_index.limiting | 115 |
| abstract_inverted_index.nuisance | 99 |
| abstract_inverted_index.one-step | 126 |
| abstract_inverted_index.presence | 49 |
| abstract_inverted_index.proposal | 87 |
| abstract_inverted_index.proposed | 144 |
| abstract_inverted_index.records, | 7 |
| abstract_inverted_index.setting. | 130 |
| abstract_inverted_index.utilizes | 88 |
| abstract_inverted_index.according | 21 |
| abstract_inverted_index.conducted | 137 |
| abstract_inverted_index.construct | 80 |
| abstract_inverted_index.developed | 41 |
| abstract_inverted_index.establish | 113 |
| abstract_inverted_index.estimator | 127 |
| abstract_inverted_index.inference | 36 |
| abstract_inverted_index.parameter | 100 |
| abstract_inverted_index.patients' | 23 |
| abstract_inverted_index.penalized | 59 |
| abstract_inverted_index.recommend | 19 |
| abstract_inverted_index.splitting | 91 |
| abstract_inverted_index.treatment | 16, 68 |
| abstract_inverted_index.Simulation | 131 |
| abstract_inverted_index.confidence | 84 |
| abstract_inverted_index.developing | 14 |
| abstract_inverted_index.electronic | 5 |
| abstract_inverted_index.hypothesis | 81 |
| abstract_inverted_index.increasing | 2, 11 |
| abstract_inverted_index.intervals. | 85 |
| abstract_inverted_index.procedures | 37 |
| abstract_inverted_index.propensity | 110 |
| abstract_inverted_index.regression | 108 |
| abstract_inverted_index.treatments | 20 |
| abstract_inverted_index.convergence | 96 |
| abstract_inverted_index.covariates. | 52 |
| abstract_inverted_index.demonstrate | 139 |
| abstract_inverted_index.superiority | 141 |
| abstract_inverted_index.estimations, | 101 |
| abstract_inverted_index.corresponding | 125 |
| abstract_inverted_index.de-correlated | 77, 120 |
| abstract_inverted_index.distributions | 116 |
| abstract_inverted_index.observational | 27 |
| abstract_inverted_index.individualized | 15, 67 |
| abstract_inverted_index.non-parametric | 104 |
| abstract_inverted_index.characteristics, | 24 |
| abstract_inverted_index.high-dimensional | 51, 71, 129 |
| abstract_inverted_index.split-and-pooled | 76, 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile |