Estimation of Cardiac Fibre Direction Based on Activation Maps Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1109/icassp49357.2023.10095692
Estimating tissue conductivity parameters from electrograms (EGMs) could be an important tool for diagnosing and treating heart rhythm disorders such as atrial fibrillation (AF). One of these parameters is the fibre direction, often assumed to be known in conductivity estimation methods. In this paper, a novel method to estimate the fibre direction from EGMs is presented. This method is based on local conduction slowness vectors of a propagating activation wave. These conduction slowness vectors follow an elliptical pattern that depends on the underlying conductivity parameters. The fibre direction and conductivity anisotropy ratio can therefore be estimated by fitting an ellipse to the conduction slowness vectors. Applying the presented method on simulated data shows that it can estimate the fibre direction more accurately than existing methods, and that its performance depends mostly on the range of wavefront directions present in the measurement area. The main advantage of the presented method is that it still functions relatively well in the presence of conduction blocks, as long as the surrounding tissue is approximately homogeneous.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/icassp49357.2023.10095692
- OA Status
- green
- Cited By
- 3
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4372339439
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4372339439Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/icassp49357.2023.10095692Digital Object Identifier
- Title
-
Estimation of Cardiac Fibre Direction Based on Activation MapsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-05Full publication date if available
- Authors
-
J. W. de Vries, Miao Sun, Natasja M.S. de Groot, Richard C. HendriksList of authors in order
- Landing page
-
https://doi.org/10.1109/icassp49357.2023.10095692Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://repository.tudelft.nl/file/File_ce0b4270-53a1-484a-bc3a-7aeda502419aDirect OA link when available
- Concepts
-
Slowness, Thermal conduction, Ellipse, Anisotropy, Wavefront, Conductivity, Mathematics, Biological system, Acoustics, Algorithm, Optics, Physics, Geometry, Quantum mechanics, Biology, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4372339439 |
|---|---|
| doi | https://doi.org/10.1109/icassp49357.2023.10095692 |
| ids.doi | https://doi.org/10.1109/icassp49357.2023.10095692 |
| ids.openalex | https://openalex.org/W4372339439 |
| fwci | 1.00715064 |
| type | article |
| title | Estimation of Cardiac Fibre Direction Based on Activation Maps |
| biblio.issue | |
| biblio.volume | 28 |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10217 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9984999895095825 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2705 |
| topics[0].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[0].display_name | Cardiac electrophysiology and arrhythmias |
| topics[1].id | https://openalex.org/T11021 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | ECG Monitoring and Analysis |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C11940443 |
| concepts[0].level | 2 |
| concepts[0].score | 0.931915819644928 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q16965645 |
| concepts[0].display_name | Slowness |
| concepts[1].id | https://openalex.org/C172100665 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7027151584625244 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7465774 |
| concepts[1].display_name | Thermal conduction |
| concepts[2].id | https://openalex.org/C74261601 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6222389936447144 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q40112 |
| concepts[2].display_name | Ellipse |
| concepts[3].id | https://openalex.org/C85725439 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5733819007873535 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466686 |
| concepts[3].display_name | Anisotropy |
| concepts[4].id | https://openalex.org/C165699331 |
| concepts[4].level | 2 |
| concepts[4].score | 0.563811182975769 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q461533 |
| concepts[4].display_name | Wavefront |
| concepts[5].id | https://openalex.org/C131540310 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5366193056106567 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q907564 |
| concepts[5].display_name | Conductivity |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3851388692855835 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C186060115 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3414735794067383 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30336093 |
| concepts[7].display_name | Biological system |
| concepts[8].id | https://openalex.org/C24890656 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32593339681625366 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[8].display_name | Acoustics |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3207232356071472 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C120665830 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28002092242240906 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[10].display_name | Optics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.27231210470199585 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.19045418500900269 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| concepts[15].id | https://openalex.org/C97355855 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[15].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/slowness |
| keywords[0].score | 0.931915819644928 |
| keywords[0].display_name | Slowness |
| keywords[1].id | https://openalex.org/keywords/thermal-conduction |
| keywords[1].score | 0.7027151584625244 |
| keywords[1].display_name | Thermal conduction |
| keywords[2].id | https://openalex.org/keywords/ellipse |
| keywords[2].score | 0.6222389936447144 |
| keywords[2].display_name | Ellipse |
| keywords[3].id | https://openalex.org/keywords/anisotropy |
| keywords[3].score | 0.5733819007873535 |
| keywords[3].display_name | Anisotropy |
| keywords[4].id | https://openalex.org/keywords/wavefront |
| keywords[4].score | 0.563811182975769 |
| keywords[4].display_name | Wavefront |
| keywords[5].id | https://openalex.org/keywords/conductivity |
| keywords[5].score | 0.5366193056106567 |
| keywords[5].display_name | Conductivity |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3851388692855835 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/biological-system |
| keywords[7].score | 0.3414735794067383 |
| keywords[7].display_name | Biological system |
| keywords[8].id | https://openalex.org/keywords/acoustics |
| keywords[8].score | 0.32593339681625366 |
| keywords[8].display_name | Acoustics |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3207232356071472 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/optics |
| keywords[10].score | 0.28002092242240906 |
| keywords[10].display_name | Optics |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.27231210470199585 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/geometry |
| keywords[12].score | 0.19045418500900269 |
| keywords[12].display_name | Geometry |
| language | en |
| locations[0].id | doi:10.1109/icassp49357.2023.10095692 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| locations[0].landing_page_url | https://doi.org/10.1109/icassp49357.2023.10095692 |
| locations[1].id | pmh:oai:tudelft.nl:uuid:dfc86a37-1fd8-477d-a08d-ce504220f9d6 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400906 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Research Repository (Delft University of Technology) |
| locations[1].source.host_organization | https://openalex.org/I98358874 |
| locations[1].source.host_organization_name | Delft University of Technology |
| locations[1].source.host_organization_lineage | https://openalex.org/I98358874 |
| locations[1].license | |
| locations[1].pdf_url | https://repository.tudelft.nl/file/File_ce0b4270-53a1-484a-bc3a-7aeda502419a |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conference paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://resolver.tudelft.nl/uuid:dfc86a37-1fd8-477d-a08d-ce504220f9d6 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5085807147 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-3731-1905 |
| authorships[0].author.display_name | J. W. de Vries |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[0].affiliations[0].raw_affiliation_string | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I98358874 |
| authorships[0].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Delft University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Johannes W. de Vries |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| authorships[1].author.id | https://openalex.org/A5007514939 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8614-3704 |
| authorships[1].author.display_name | Miao Sun |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[1].affiliations[0].raw_affiliation_string | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I98358874 |
| authorships[1].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Delft University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Miao Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| authorships[2].author.id | https://openalex.org/A5042927743 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0259-6691 |
| authorships[2].author.display_name | Natasja M.S. de Groot |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Cardiology, Erasmus University Medical Center, the Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[2].institutions[0].ror | https://ror.org/018906e22 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Erasmus MC |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Natasja M.S. de Groot |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Cardiology, Erasmus University Medical Center, the Netherlands |
| authorships[3].author.id | https://openalex.org/A5011148355 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8297-0251 |
| authorships[3].author.display_name | Richard C. Hendriks |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I98358874 |
| authorships[3].affiliations[0].raw_affiliation_string | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| authorships[3].institutions[0].id | https://openalex.org/I98358874 |
| authorships[3].institutions[0].ror | https://ror.org/02e2c7k09 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I98358874 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Delft University of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Richard C. Hendriks |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Signal Processing Systems Group, Delft University of Technology, the Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://repository.tudelft.nl/file/File_ce0b4270-53a1-484a-bc3a-7aeda502419a |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimation of Cardiac Fibre Direction Based on Activation Maps |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10217 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9984999895095825 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2705 |
| primary_topic.subfield.display_name | Cardiology and Cardiovascular Medicine |
| primary_topic.display_name | Cardiac electrophysiology and arrhythmias |
| related_works | https://openalex.org/W3103461978, https://openalex.org/W2356299150, https://openalex.org/W4378230892, https://openalex.org/W2003964906, https://openalex.org/W4391981100, https://openalex.org/W4389273484, https://openalex.org/W2144966994, https://openalex.org/W3017010751, https://openalex.org/W2168615451, https://openalex.org/W1984459742 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:tudelft.nl:uuid:dfc86a37-1fd8-477d-a08d-ce504220f9d6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400906 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Repository (Delft University of Technology) |
| best_oa_location.source.host_organization | https://openalex.org/I98358874 |
| best_oa_location.source.host_organization_name | Delft University of Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I98358874 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://repository.tudelft.nl/file/File_ce0b4270-53a1-484a-bc3a-7aeda502419a |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | conference paper |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://resolver.tudelft.nl/uuid:dfc86a37-1fd8-477d-a08d-ce504220f9d6 |
| primary_location.id | doi:10.1109/icassp49357.2023.10095692 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) |
| primary_location.landing_page_url | https://doi.org/10.1109/icassp49357.2023.10095692 |
| publication_date | 2023-05-05 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2027640201, https://openalex.org/W2143421921, https://openalex.org/W1969179215, https://openalex.org/W2140602160, https://openalex.org/W2144620433, https://openalex.org/W2002660415, https://openalex.org/W2915259795, https://openalex.org/W4211249670, https://openalex.org/W2104749146, https://openalex.org/W1972885059, https://openalex.org/W2042866082, https://openalex.org/W2078242986, https://openalex.org/W1985940938, https://openalex.org/W2098355081, https://openalex.org/W4220941556, https://openalex.org/W3173704004, https://openalex.org/W2092440314, https://openalex.org/W2898941558 |
| referenced_works_count | 18 |
| abstract_inverted_index.a | 44, 66 |
| abstract_inverted_index.In | 41 |
| abstract_inverted_index.an | 9, 75, 98 |
| abstract_inverted_index.as | 20, 162, 164 |
| abstract_inverted_index.be | 8, 35, 94 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.in | 37, 138, 156 |
| abstract_inverted_index.is | 28, 54, 58, 149, 168 |
| abstract_inverted_index.it | 114, 151 |
| abstract_inverted_index.of | 25, 65, 134, 145, 159 |
| abstract_inverted_index.on | 60, 80, 109, 131 |
| abstract_inverted_index.to | 34, 47, 100 |
| abstract_inverted_index.One | 24 |
| abstract_inverted_index.The | 85, 142 |
| abstract_inverted_index.and | 14, 88, 125 |
| abstract_inverted_index.can | 92, 115 |
| abstract_inverted_index.for | 12 |
| abstract_inverted_index.its | 127 |
| abstract_inverted_index.the | 29, 49, 81, 101, 106, 117, 132, 139, 146, 157, 165 |
| abstract_inverted_index.EGMs | 53 |
| abstract_inverted_index.This | 56 |
| abstract_inverted_index.data | 111 |
| abstract_inverted_index.from | 4, 52 |
| abstract_inverted_index.long | 163 |
| abstract_inverted_index.main | 143 |
| abstract_inverted_index.more | 120 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.than | 122 |
| abstract_inverted_index.that | 78, 113, 126, 150 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.tool | 11 |
| abstract_inverted_index.well | 155 |
| abstract_inverted_index.(AF). | 23 |
| abstract_inverted_index.These | 70 |
| abstract_inverted_index.area. | 141 |
| abstract_inverted_index.based | 59 |
| abstract_inverted_index.could | 7 |
| abstract_inverted_index.fibre | 30, 50, 86, 118 |
| abstract_inverted_index.heart | 16 |
| abstract_inverted_index.known | 36 |
| abstract_inverted_index.local | 61 |
| abstract_inverted_index.novel | 45 |
| abstract_inverted_index.often | 32 |
| abstract_inverted_index.range | 133 |
| abstract_inverted_index.ratio | 91 |
| abstract_inverted_index.shows | 112 |
| abstract_inverted_index.still | 152 |
| abstract_inverted_index.these | 26 |
| abstract_inverted_index.wave. | 69 |
| abstract_inverted_index.(EGMs) | 6 |
| abstract_inverted_index.atrial | 21 |
| abstract_inverted_index.follow | 74 |
| abstract_inverted_index.method | 46, 57, 108, 148 |
| abstract_inverted_index.mostly | 130 |
| abstract_inverted_index.paper, | 43 |
| abstract_inverted_index.rhythm | 17 |
| abstract_inverted_index.tissue | 1, 167 |
| abstract_inverted_index.assumed | 33 |
| abstract_inverted_index.blocks, | 161 |
| abstract_inverted_index.depends | 79, 129 |
| abstract_inverted_index.ellipse | 99 |
| abstract_inverted_index.fitting | 97 |
| abstract_inverted_index.pattern | 77 |
| abstract_inverted_index.present | 137 |
| abstract_inverted_index.vectors | 64, 73 |
| abstract_inverted_index.Applying | 105 |
| abstract_inverted_index.estimate | 48, 116 |
| abstract_inverted_index.existing | 123 |
| abstract_inverted_index.methods, | 124 |
| abstract_inverted_index.methods. | 40 |
| abstract_inverted_index.presence | 158 |
| abstract_inverted_index.slowness | 63, 72, 103 |
| abstract_inverted_index.treating | 15 |
| abstract_inverted_index.vectors. | 104 |
| abstract_inverted_index.advantage | 144 |
| abstract_inverted_index.direction | 51, 87, 119 |
| abstract_inverted_index.disorders | 18 |
| abstract_inverted_index.estimated | 95 |
| abstract_inverted_index.functions | 153 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.presented | 107, 147 |
| abstract_inverted_index.simulated | 110 |
| abstract_inverted_index.therefore | 93 |
| abstract_inverted_index.wavefront | 135 |
| abstract_inverted_index.Estimating | 0 |
| abstract_inverted_index.accurately | 121 |
| abstract_inverted_index.activation | 68 |
| abstract_inverted_index.anisotropy | 90 |
| abstract_inverted_index.conduction | 62, 71, 102, 160 |
| abstract_inverted_index.diagnosing | 13 |
| abstract_inverted_index.direction, | 31 |
| abstract_inverted_index.directions | 136 |
| abstract_inverted_index.elliptical | 76 |
| abstract_inverted_index.estimation | 39 |
| abstract_inverted_index.parameters | 3, 27 |
| abstract_inverted_index.presented. | 55 |
| abstract_inverted_index.relatively | 154 |
| abstract_inverted_index.underlying | 82 |
| abstract_inverted_index.measurement | 140 |
| abstract_inverted_index.parameters. | 84 |
| abstract_inverted_index.performance | 128 |
| abstract_inverted_index.propagating | 67 |
| abstract_inverted_index.surrounding | 166 |
| abstract_inverted_index.conductivity | 2, 38, 83, 89 |
| abstract_inverted_index.electrograms | 5 |
| abstract_inverted_index.fibrillation | 22 |
| abstract_inverted_index.homogeneous. | 170 |
| abstract_inverted_index.approximately | 169 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.73460053 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |