Estimation of Mechanical Power Output Employing Deep Learning on Inertial Measurement Data in Roller Ski Skating Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/s21196500
The ability to optimize power generation in sports is imperative, both for understanding and balancing training load correctly, and for optimizing competition performance. In this paper, we aim to estimate mechanical power output by employing a time-sequential information-based deep Long Short-Term Memory (LSTM) neural network from multiple inertial measurement units (IMUs). Thirteen athletes conducted roller ski skating trials on a treadmill with varying incline and speed. The acceleration and gyroscope data collected with the IMUs were run through statistical feature processing, before being used by the deep learning model to estimate power output. The model was thereafter used for prediction of power from test data using two approaches. First, a user-dependent case was explored, reaching a power estimation within 3.5% error. Second, a user-independent case was developed, reaching an error of 11.6% for the power estimation. Finally, the LSTM model was compared to two other machine learning models and was found to be superior. In conclusion, the user-dependent model allows for precise estimation of roller skiing power output after training the model on data from each athlete. The user-independent model provides less accurate estimation; however, the accuracy may be sufficient for providing valuable information for recreational skiers.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s21196500
- https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132
- OA Status
- gold
- Cited By
- 10
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3204821959
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3204821959Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s21196500Digital Object Identifier
- Title
-
Estimation of Mechanical Power Output Employing Deep Learning on Inertial Measurement Data in Roller Ski SkatingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-29Full publication date if available
- Authors
-
Md. Zia Uddin, Trine M. Seeberg, Jan Kocbach, Anders E. Liverud, Víctor González, Øyvind Sandbakk, Frédéric MeyerList of authors in order
- Landing page
-
https://doi.org/10.3390/s21196500Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132Direct OA link when available
- Concepts
-
Accelerometer, Computer science, Artificial neural network, Gyroscope, Power (physics), Artificial intelligence, Deep learning, Inertial measurement unit, Simulation, Feature (linguistics), Machine learning, Engineering, Physics, Operating system, Philosophy, Quantum mechanics, Aerospace engineering, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3204821959 |
|---|---|
| doi | https://doi.org/10.3390/s21196500 |
| ids.doi | https://doi.org/10.3390/s21196500 |
| ids.mag | 3204821959 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34640819 |
| ids.openalex | https://openalex.org/W3204821959 |
| fwci | 1.41498593 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D056352 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Athletes |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000077321 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Deep Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D005080 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Exercise Test |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D012861 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Skating |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012865 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Skiing |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D056352 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Athletes |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000077321 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Deep Learning |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005080 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Exercise Test |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D012861 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Skating |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012865 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Skiing |
| type | article |
| title | Estimation of Mechanical Power Output Employing Deep Learning on Inertial Measurement Data in Roller Ski Skating |
| awards[0].id | https://openalex.org/G1262382736 |
| awards[0].funder_id | https://openalex.org/F4320323299 |
| awards[0].display_name | |
| awards[0].funder_award_id | 270791 |
| awards[0].funder_display_name | Norges Forskningsråd |
| biblio.issue | 19 |
| biblio.volume | 21 |
| biblio.last_page | 6500 |
| biblio.first_page | 6500 |
| topics[0].id | https://openalex.org/T13176 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Winter Sports Injuries and Performance |
| topics[1].id | https://openalex.org/T10157 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9970999956130981 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2732 |
| topics[1].subfield.display_name | Orthopedics and Sports Medicine |
| topics[1].display_name | Sports Performance and Training |
| topics[2].id | https://openalex.org/T11018 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9872999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Lower Extremity Biomechanics and Pathologies |
| funders[0].id | https://openalex.org/F4320323299 |
| funders[0].ror | https://ror.org/00epmv149 |
| funders[0].display_name | Norges Forskningsråd |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C89805583 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6320391297340393 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q192940 |
| concepts[0].display_name | Accelerometer |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5942341685295105 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C50644808 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5935057401657104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[2].display_name | Artificial neural network |
| concepts[3].id | https://openalex.org/C158488048 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5577260255813599 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q483400 |
| concepts[3].display_name | Gyroscope |
| concepts[4].id | https://openalex.org/C163258240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5446322560310364 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[4].display_name | Power (physics) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.533157229423523 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5318664312362671 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C79061980 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4944455623626709 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q941680 |
| concepts[7].display_name | Inertial measurement unit |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4682914614677429 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C2776401178 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4163490831851959 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[9].display_name | Feature (linguistics) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3991939425468445 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.31265750527381897 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C121332964 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[12].display_name | Physics |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C138885662 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[14].display_name | Philosophy |
| concepts[15].id | https://openalex.org/C62520636 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[15].display_name | Quantum mechanics |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/accelerometer |
| keywords[0].score | 0.6320391297340393 |
| keywords[0].display_name | Accelerometer |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5942341685295105 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[2].score | 0.5935057401657104 |
| keywords[2].display_name | Artificial neural network |
| keywords[3].id | https://openalex.org/keywords/gyroscope |
| keywords[3].score | 0.5577260255813599 |
| keywords[3].display_name | Gyroscope |
| keywords[4].id | https://openalex.org/keywords/power |
| keywords[4].score | 0.5446322560310364 |
| keywords[4].display_name | Power (physics) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.533157229423523 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5318664312362671 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/inertial-measurement-unit |
| keywords[7].score | 0.4944455623626709 |
| keywords[7].display_name | Inertial measurement unit |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.4682914614677429 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/feature |
| keywords[9].score | 0.4163490831851959 |
| keywords[9].display_name | Feature (linguistics) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.3991939425468445 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.31265750527381897 |
| keywords[11].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.3390/s21196500 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s21196500 |
| locations[1].id | pmid:34640819 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34640819 |
| locations[2].id | pmh:oai:doaj.org/article:726a6944024f4c8cb8c8b6543a3441f4 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 21, Iss 19, p 6500 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/726a6944024f4c8cb8c8b6543a3441f4 |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/21/19/6500/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 21; Issue 19; Pages: 6500 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s21196500 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8512452 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8512452 |
| locations[5].id | pmh:oai:www.duo.uio.no:10852/90705 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306401717 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | Duo Research Archive (University of Oslo) |
| locations[5].source.host_organization | https://openalex.org/I184942183 |
| locations[5].source.host_organization_name | University of Oslo |
| locations[5].source.host_organization_lineage | https://openalex.org/I184942183 |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | info:eu-repo/semantics/article |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | 1424-8220 |
| locations[5].landing_page_url | http://hdl.handle.net/10852/90705 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5051442365 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5215-1834 |
| authorships[0].author.display_name | Md. Zia Uddin |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[0].affiliations[0].raw_affiliation_string | SINTEF Digital, 0373 Oslo, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I4387930215 |
| authorships[0].institutions[0].ror | https://ror.org/028m52w57 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | SINTEF Digital |
| authorships[0].institutions[1].id | https://openalex.org/I173888879 |
| authorships[0].institutions[1].ror | https://ror.org/01f677e56 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I173888879 |
| authorships[0].institutions[1].country_code | NO |
| authorships[0].institutions[1].display_name | SINTEF |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Md Zia Uddin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | SINTEF Digital, 0373 Oslo, Norway |
| authorships[1].author.id | https://openalex.org/A5042213656 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6801-3842 |
| authorships[1].author.display_name | Trine M. Seeberg |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[1].affiliations[0].raw_affiliation_string | SINTEF Digital, 0373 Oslo, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I4387930215 |
| authorships[1].institutions[0].ror | https://ror.org/028m52w57 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | SINTEF Digital |
| authorships[1].institutions[1].id | https://openalex.org/I173888879 |
| authorships[1].institutions[1].ror | https://ror.org/01f677e56 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I173888879 |
| authorships[1].institutions[1].country_code | NO |
| authorships[1].institutions[1].display_name | SINTEF |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Trine M. Seeberg |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | SINTEF Digital, 0373 Oslo, Norway |
| authorships[2].author.id | https://openalex.org/A5059053118 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6360-6814 |
| authorships[2].author.display_name | Jan Kocbach |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I204778367 |
| authorships[2].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jan Kocbach |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[3].author.id | https://openalex.org/A5085286765 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9022-4272 |
| authorships[3].author.display_name | Anders E. Liverud |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[3].affiliations[0].raw_affiliation_string | SINTEF Digital, 0373 Oslo, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I4387930215 |
| authorships[3].institutions[0].ror | https://ror.org/028m52w57 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | SINTEF Digital |
| authorships[3].institutions[1].id | https://openalex.org/I173888879 |
| authorships[3].institutions[1].ror | https://ror.org/01f677e56 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I173888879 |
| authorships[3].institutions[1].country_code | NO |
| authorships[3].institutions[1].display_name | SINTEF |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Anders E. Liverud |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | SINTEF Digital, 0373 Oslo, Norway |
| authorships[4].author.id | https://openalex.org/A5100614220 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4988-2425 |
| authorships[4].author.display_name | Víctor González |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[4].affiliations[0].raw_affiliation_string | SINTEF Digital, 0373 Oslo, Norway |
| authorships[4].institutions[0].id | https://openalex.org/I4387930215 |
| authorships[4].institutions[0].ror | https://ror.org/028m52w57 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I173888879, https://openalex.org/I4387930215 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | SINTEF Digital |
| authorships[4].institutions[1].id | https://openalex.org/I173888879 |
| authorships[4].institutions[1].ror | https://ror.org/01f677e56 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I173888879 |
| authorships[4].institutions[1].country_code | NO |
| authorships[4].institutions[1].display_name | SINTEF |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Victor Gonzalez |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | SINTEF Digital, 0373 Oslo, Norway |
| authorships[5].author.id | https://openalex.org/A5065839112 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9014-5152 |
| authorships[5].author.display_name | Øyvind Sandbakk |
| authorships[5].countries | NO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[5].affiliations[0].raw_affiliation_string | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[5].institutions[0].id | https://openalex.org/I204778367 |
| authorships[5].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[5].institutions[0].country_code | NO |
| authorships[5].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Øyvind Sandbakk |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Centre for Elite Sports Research, Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, 7491 Trondheim, Norway |
| authorships[6].author.id | https://openalex.org/A5014685834 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1434-6542 |
| authorships[6].author.display_name | Frédéric Meyer |
| authorships[6].countries | NO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I184942183 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Informatics, University of Oslo, 0316 Oslo, Norway |
| authorships[6].institutions[0].id | https://openalex.org/I184942183 |
| authorships[6].institutions[0].ror | https://ror.org/01xtthb56 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I184942183 |
| authorships[6].institutions[0].country_code | NO |
| authorships[6].institutions[0].display_name | University of Oslo |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Frédéric Meyer |
| authorships[6].is_corresponding | True |
| authorships[6].raw_affiliation_strings | Department of Informatics, University of Oslo, 0316 Oslo, Norway |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimation of Mechanical Power Output Employing Deep Learning on Inertial Measurement Data in Roller Ski Skating |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13176 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Winter Sports Injuries and Performance |
| related_works | https://openalex.org/W2356006086, https://openalex.org/W2987432907, https://openalex.org/W4234814094, https://openalex.org/W2545168295, https://openalex.org/W1973973903, https://openalex.org/W2365897603, https://openalex.org/W2156308897, https://openalex.org/W3195533899, https://openalex.org/W3208523813, https://openalex.org/W4287084017 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 6 |
| best_oa_location.id | doi:10.3390/s21196500 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s21196500 |
| primary_location.id | doi:10.3390/s21196500 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/21/19/6500/pdf?version=1632908132 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s21196500 |
| publication_date | 2021-09-29 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2578384382, https://openalex.org/W2091845023, https://openalex.org/W2807747377, https://openalex.org/W2988537300, https://openalex.org/W2011593659, https://openalex.org/W2063175235, https://openalex.org/W7073919178, https://openalex.org/W2900618611, https://openalex.org/W3044114303, https://openalex.org/W3013488142, https://openalex.org/W3101942435, https://openalex.org/W1820488154, https://openalex.org/W2561705714, https://openalex.org/W2763244662, https://openalex.org/W2948042417, https://openalex.org/W2780731227, https://openalex.org/W4255343619, https://openalex.org/W2136922672, https://openalex.org/W2770769349, https://openalex.org/W2143612262, https://openalex.org/W3135100418, https://openalex.org/W3127168948, https://openalex.org/W3161657383, https://openalex.org/W3147481751, https://openalex.org/W3123758454, https://openalex.org/W3012407635, https://openalex.org/W3142826014, https://openalex.org/W1995466344, https://openalex.org/W1987299785 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 35, 59, 109, 115, 122 |
| abstract_inverted_index.In | 23, 154 |
| abstract_inverted_index.an | 128 |
| abstract_inverted_index.be | 152, 188 |
| abstract_inverted_index.by | 33, 84 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 100, 130, 163 |
| abstract_inverted_index.on | 58, 172 |
| abstract_inverted_index.to | 2, 28, 89, 142, 151 |
| abstract_inverted_index.we | 26 |
| abstract_inverted_index.The | 0, 66, 93, 177 |
| abstract_inverted_index.aim | 27 |
| abstract_inverted_index.and | 13, 18, 64, 68, 148 |
| abstract_inverted_index.for | 11, 19, 98, 132, 160, 190, 194 |
| abstract_inverted_index.may | 187 |
| abstract_inverted_index.run | 76 |
| abstract_inverted_index.ski | 55 |
| abstract_inverted_index.the | 73, 85, 133, 137, 156, 170, 185 |
| abstract_inverted_index.two | 106, 143 |
| abstract_inverted_index.was | 95, 112, 125, 140, 149 |
| abstract_inverted_index.3.5% | 119 |
| abstract_inverted_index.IMUs | 74 |
| abstract_inverted_index.LSTM | 138 |
| abstract_inverted_index.Long | 39 |
| abstract_inverted_index.both | 10 |
| abstract_inverted_index.case | 111, 124 |
| abstract_inverted_index.data | 70, 104, 173 |
| abstract_inverted_index.deep | 38, 86 |
| abstract_inverted_index.each | 175 |
| abstract_inverted_index.from | 45, 102, 174 |
| abstract_inverted_index.less | 181 |
| abstract_inverted_index.load | 16 |
| abstract_inverted_index.test | 103 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.used | 83, 97 |
| abstract_inverted_index.were | 75 |
| abstract_inverted_index.with | 61, 72 |
| abstract_inverted_index.11.6% | 131 |
| abstract_inverted_index.after | 168 |
| abstract_inverted_index.being | 82 |
| abstract_inverted_index.error | 129 |
| abstract_inverted_index.found | 150 |
| abstract_inverted_index.model | 88, 94, 139, 158, 171, 179 |
| abstract_inverted_index.other | 144 |
| abstract_inverted_index.power | 4, 31, 91, 101, 116, 134, 166 |
| abstract_inverted_index.units | 49 |
| abstract_inverted_index.using | 105 |
| abstract_inverted_index.(LSTM) | 42 |
| abstract_inverted_index.First, | 108 |
| abstract_inverted_index.Memory | 41 |
| abstract_inverted_index.allows | 159 |
| abstract_inverted_index.before | 81 |
| abstract_inverted_index.error. | 120 |
| abstract_inverted_index.models | 147 |
| abstract_inverted_index.neural | 43 |
| abstract_inverted_index.output | 32, 167 |
| abstract_inverted_index.paper, | 25 |
| abstract_inverted_index.roller | 54, 164 |
| abstract_inverted_index.skiing | 165 |
| abstract_inverted_index.speed. | 65 |
| abstract_inverted_index.sports | 7 |
| abstract_inverted_index.trials | 57 |
| abstract_inverted_index.within | 118 |
| abstract_inverted_index.(IMUs). | 50 |
| abstract_inverted_index.Second, | 121 |
| abstract_inverted_index.ability | 1 |
| abstract_inverted_index.feature | 79 |
| abstract_inverted_index.incline | 63 |
| abstract_inverted_index.machine | 145 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.output. | 92 |
| abstract_inverted_index.precise | 161 |
| abstract_inverted_index.skating | 56 |
| abstract_inverted_index.skiers. | 196 |
| abstract_inverted_index.through | 77 |
| abstract_inverted_index.varying | 62 |
| abstract_inverted_index.Finally, | 136 |
| abstract_inverted_index.Thirteen | 51 |
| abstract_inverted_index.accuracy | 186 |
| abstract_inverted_index.accurate | 182 |
| abstract_inverted_index.athlete. | 176 |
| abstract_inverted_index.athletes | 52 |
| abstract_inverted_index.compared | 141 |
| abstract_inverted_index.estimate | 29, 90 |
| abstract_inverted_index.however, | 184 |
| abstract_inverted_index.inertial | 47 |
| abstract_inverted_index.learning | 87, 146 |
| abstract_inverted_index.multiple | 46 |
| abstract_inverted_index.optimize | 3 |
| abstract_inverted_index.provides | 180 |
| abstract_inverted_index.reaching | 114, 127 |
| abstract_inverted_index.training | 15, 169 |
| abstract_inverted_index.valuable | 192 |
| abstract_inverted_index.balancing | 14 |
| abstract_inverted_index.collected | 71 |
| abstract_inverted_index.conducted | 53 |
| abstract_inverted_index.employing | 34 |
| abstract_inverted_index.explored, | 113 |
| abstract_inverted_index.gyroscope | 69 |
| abstract_inverted_index.providing | 191 |
| abstract_inverted_index.superior. | 153 |
| abstract_inverted_index.treadmill | 60 |
| abstract_inverted_index.Short-Term | 40 |
| abstract_inverted_index.correctly, | 17 |
| abstract_inverted_index.developed, | 126 |
| abstract_inverted_index.estimation | 117, 162 |
| abstract_inverted_index.generation | 5 |
| abstract_inverted_index.mechanical | 30 |
| abstract_inverted_index.optimizing | 20 |
| abstract_inverted_index.prediction | 99 |
| abstract_inverted_index.sufficient | 189 |
| abstract_inverted_index.thereafter | 96 |
| abstract_inverted_index.approaches. | 107 |
| abstract_inverted_index.competition | 21 |
| abstract_inverted_index.conclusion, | 155 |
| abstract_inverted_index.estimation. | 135 |
| abstract_inverted_index.estimation; | 183 |
| abstract_inverted_index.imperative, | 9 |
| abstract_inverted_index.information | 193 |
| abstract_inverted_index.measurement | 48 |
| abstract_inverted_index.processing, | 80 |
| abstract_inverted_index.statistical | 78 |
| abstract_inverted_index.acceleration | 67 |
| abstract_inverted_index.performance. | 22 |
| abstract_inverted_index.recreational | 195 |
| abstract_inverted_index.understanding | 12 |
| abstract_inverted_index.user-dependent | 110, 157 |
| abstract_inverted_index.time-sequential | 36 |
| abstract_inverted_index.user-independent | 123, 178 |
| abstract_inverted_index.information-based | 37 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5014685834 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I184942183 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.80486308 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |