Estimativa da participação calórica de alimentos ultraprocessados nos municípios brasileiros Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1590/scielopreprints.9995
Objetivo : Estimar a participação calórica de alimentos ultraprocessados (% AUP) em 5.570 municípios brasileiros. Métodos : A estimativa de % AUP nos municípios foi realizada a partir de um modelo estatístico de predição construído com base nos dados de 46.164 indivíduos com idades > 10 anos participantes da Pesquisa de Orçamentos Familiares (POF 2017-2018). A regressão linear múltipla foi usada para estimar a % média de AUP (medida por meio de dois registros alimentares de 24 horas) em função das variáveis preditoras (sexo, idade, renda, escolaridade, raça/cor, urbanidade, unidades da federação e localização geográfica ). O modelo foi avaliado quanto a sua adequação por meio de análise de resíduos e pela comparação entre valores preditos pelo modelo e mensurados diretamente na POF 2017-2018 por meio do coeficiente de brilho-concordância de Lin (CCC). Os coeficientes lineares obtidos no modelo de regressão linear múltiplo foram aplicados aos dados sociodemográficos da amostra do Censo de 2010 (aferidos de forma semelhante à POF) para estimar o % de AUP de cada um dos municípios. Resultados : O modelo estatístico mostrado-se adequado, apresentando distribuição normal dos resíduos e um CCC de 0,84, proporção concordância quase perfeita. Foi observada uma heterogeneidade na distribuição das estimativas de % AUP, variando de 5,75% em Aroeiras do Itaim (PI) a 30,5% em Florianópolis (SC). As estimativas de % AUP foram mais altas ( > 20%) em municípios da região Sul e do estado de São Paulo. As capitais apresentam maiores estimativas de participação calórica de alimentos ultraprocessados em relação aos demais municípios de seus estados. Conclusões : O modelo preditivo revelou diferenças de % AUP entre os municípios brasileiros. As estimativas geradas podem contribuir para o monitoramento do consumo alimentar de ultraprocessados no nível municipal e fortalecer e subsidiar a criação de políticas públicas focadas na promoção da alimentação saudável.
Related Topics
- Type
- preprint
- Language
- pt
- Landing Page
- http://doi.org/10.1590/scielopreprints.9995
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402567788
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402567788Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1590/scielopreprints.9995Digital Object Identifier
- Title
-
Estimativa da participação calórica de alimentos ultraprocessados nos municípios brasileirosWork title
- Type
-
preprintOpenAlex work type
- Language
-
ptPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-17Full publication date if available
- Authors
-
Leandro Teixeira Cacau, Maria Helena D’Aquino Benício, Renata Bertazzi Levy, Maria Laura da Costa LouzadaList of authors in order
- Landing page
-
https://doi.org/10.1590/scielopreprints.9995Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1590/scielopreprints.9995Direct OA link when available
- Concepts
-
Humanities, Chemistry, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402567788 |
|---|---|
| doi | https://doi.org/10.1590/scielopreprints.9995 |
| ids.doi | https://doi.org/10.1590/scielopreprints.9995 |
| ids.openalex | https://openalex.org/W4402567788 |
| fwci | |
| type | preprint |
| title | Estimativa da participação calórica de alimentos ultraprocessados nos municípios brasileiros |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12583 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9484999775886536 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1106 |
| topics[0].subfield.display_name | Food Science |
| topics[0].display_name | Food Waste Reduction and Sustainability |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C15708023 |
| concepts[0].level | 1 |
| concepts[0].score | 0.40460968017578125 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q80083 |
| concepts[0].display_name | Humanities |
| concepts[1].id | https://openalex.org/C185592680 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3244243264198303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[1].display_name | Chemistry |
| concepts[2].id | https://openalex.org/C138885662 |
| concepts[2].level | 0 |
| concepts[2].score | 0.14162898063659668 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[2].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/humanities |
| keywords[0].score | 0.40460968017578125 |
| keywords[0].display_name | Humanities |
| keywords[1].id | https://openalex.org/keywords/chemistry |
| keywords[1].score | 0.3244243264198303 |
| keywords[1].display_name | Chemistry |
| keywords[2].id | https://openalex.org/keywords/philosophy |
| keywords[2].score | 0.14162898063659668 |
| keywords[2].display_name | Philosophy |
| language | pt |
| locations[0].id | doi:10.1590/scielopreprints.9995 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://doi.org/10.1590/scielopreprints.9995 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5027055111 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1681-5960 |
| authorships[0].author.display_name | Leandro Teixeira Cacau |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Leandro Teixeira Cacau |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5091643714 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1851-1178 |
| authorships[1].author.display_name | Maria Helena D’Aquino Benício |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maria Helena Benicio |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5059937532 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5388-7002 |
| authorships[2].author.display_name | Renata Bertazzi Levy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Renata Levy |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044920661 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3756-2301 |
| authorships[3].author.display_name | Maria Laura da Costa Louzada |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Maria Laura Louzada |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.1590/scielopreprints.9995 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Estimativa da participação calórica de alimentos ultraprocessados nos municípios brasileiros |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12583 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9484999775886536 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1106 |
| primary_topic.subfield.display_name | Food Science |
| primary_topic.display_name | Food Waste Reduction and Sustainability |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487, https://openalex.org/W1986764834 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1590/scielopreprints.9995 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://doi.org/10.1590/scielopreprints.9995 |
| primary_location.id | doi:10.1590/scielopreprints.9995 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://doi.org/10.1590/scielopreprints.9995 |
| publication_date | 2024-09-17 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.% | 20, 64, 163, 201, 219, 265 |
| abstract_inverted_index.( | 224 |
| abstract_inverted_index.: | 1, 16, 172, 258 |
| abstract_inverted_index.A | 17, 55 |
| abstract_inverted_index.O | 96, 173, 259 |
| abstract_inverted_index.a | 3, 26, 63, 101, 211, 291 |
| abstract_inverted_index.e | 92, 110, 118, 183, 232, 287, 289 |
| abstract_inverted_index.o | 162, 277 |
| abstract_inverted_index.). | 95 |
| abstract_inverted_index.10 | 45 |
| abstract_inverted_index.24 | 76 |
| abstract_inverted_index.As | 216, 238, 271 |
| abstract_inverted_index.Os | 133 |
| abstract_inverted_index.da | 48, 90, 148, 229, 299 |
| abstract_inverted_index.de | 6, 19, 28, 32, 39, 50, 66, 71, 75, 106, 108, 128, 130, 139, 152, 155, 164, 166, 186, 200, 204, 218, 235, 243, 246, 254, 264, 282, 293 |
| abstract_inverted_index.do | 126, 150, 208, 233, 279 |
| abstract_inverted_index.em | 11, 78, 206, 213, 227 |
| abstract_inverted_index.na | 121, 196, 297 |
| abstract_inverted_index.no | 137 |
| abstract_inverted_index.os | 268 |
| abstract_inverted_index.um | 29, 168, 184 |
| abstract_inverted_index.à | 158 |
| abstract_inverted_index.AUP | 21, 67, 165, 220, 266 |
| abstract_inverted_index.CCC | 185 |
| abstract_inverted_index.Foi | 192 |
| abstract_inverted_index.Lin | 131 |
| abstract_inverted_index.POF | 122 |
| abstract_inverted_index.Sul | 231 |
| abstract_inverted_index.aos | 145, 251 |
| abstract_inverted_index.com | 35, 42 |
| abstract_inverted_index.das | 80, 198 |
| abstract_inverted_index.dos | 169, 181 |
| abstract_inverted_index.foi | 24, 59, 98 |
| abstract_inverted_index.nos | 22, 37 |
| abstract_inverted_index.por | 69, 104, 124 |
| abstract_inverted_index.sua | 102 |
| abstract_inverted_index.uma | 194 |
| abstract_inverted_index.> | 44, 225 |
| abstract_inverted_index.(PI) | 210 |
| abstract_inverted_index.(POF | 53 |
| abstract_inverted_index.20%) | 226 |
| abstract_inverted_index.2010 | 153 |
| abstract_inverted_index.AUP) | 10 |
| abstract_inverted_index.AUP, | 202 |
| abstract_inverted_index.POF) | 159 |
| abstract_inverted_index.São | 236 |
| abstract_inverted_index.anos | 46 |
| abstract_inverted_index.base | 36 |
| abstract_inverted_index.cada | 167 |
| abstract_inverted_index.dois | 72 |
| abstract_inverted_index.mais | 222 |
| abstract_inverted_index.meio | 70, 105, 125 |
| abstract_inverted_index.para | 61, 160, 276 |
| abstract_inverted_index.pela | 111 |
| abstract_inverted_index.pelo | 116 |
| abstract_inverted_index.seus | 255 |
| abstract_inverted_index.(SC). | 215 |
| abstract_inverted_index.0,84, | 187 |
| abstract_inverted_index.30,5% | 212 |
| abstract_inverted_index.5,75% | 205 |
| abstract_inverted_index.5.570 | 12 |
| abstract_inverted_index.Censo | 151 |
| abstract_inverted_index.Itaim | 209 |
| abstract_inverted_index.altas | 223 |
| abstract_inverted_index.dados | 38, 146 |
| abstract_inverted_index.entre | 113, 267 |
| abstract_inverted_index.foram | 143, 221 |
| abstract_inverted_index.forma | 156 |
| abstract_inverted_index.podem | 274 |
| abstract_inverted_index.quase | 190 |
| abstract_inverted_index.usada | 60 |
| abstract_inverted_index.(CCC). | 132 |
| abstract_inverted_index.(sexo, | 83 |
| abstract_inverted_index.46.164 | 40 |
| abstract_inverted_index.Paulo. | 237 |
| abstract_inverted_index.demais | 252 |
| abstract_inverted_index.estado | 234 |
| abstract_inverted_index.horas) | 77 |
| abstract_inverted_index.idade, | 84 |
| abstract_inverted_index.idades | 43 |
| abstract_inverted_index.linear | 57, 141 |
| abstract_inverted_index.modelo | 30, 97, 117, 138, 174, 260 |
| abstract_inverted_index.média | 65 |
| abstract_inverted_index.normal | 180 |
| abstract_inverted_index.nível | 285 |
| abstract_inverted_index.partir | 27 |
| abstract_inverted_index.quanto | 100 |
| abstract_inverted_index.renda, | 85 |
| abstract_inverted_index.(medida | 68 |
| abstract_inverted_index.Estimar | 2 |
| abstract_inverted_index.amostra | 149 |
| abstract_inverted_index.consumo | 280 |
| abstract_inverted_index.estimar | 62, 161 |
| abstract_inverted_index.focadas | 296 |
| abstract_inverted_index.geradas | 273 |
| abstract_inverted_index.maiores | 241 |
| abstract_inverted_index.obtidos | 136 |
| abstract_inverted_index.região | 230 |
| abstract_inverted_index.revelou | 262 |
| abstract_inverted_index.valores | 114 |
| abstract_inverted_index.Aroeiras | 207 |
| abstract_inverted_index.Métodos | 15 |
| abstract_inverted_index.Objetivo | 0 |
| abstract_inverted_index.Pesquisa | 49 |
| abstract_inverted_index.análise | 107 |
| abstract_inverted_index.avaliado | 99 |
| abstract_inverted_index.capitais | 239 |
| abstract_inverted_index.estados. | 256 |
| abstract_inverted_index.função | 79 |
| abstract_inverted_index.lineares | 135 |
| abstract_inverted_index.preditos | 115 |
| abstract_inverted_index.unidades | 89 |
| abstract_inverted_index.variando | 203 |
| abstract_inverted_index.(% | 9 |
| abstract_inverted_index.em | 249 |
| abstract_inverted_index.no | 284 |
| abstract_inverted_index.(aferidos | 154 |
| abstract_inverted_index.2017-2018 | 123 |
| abstract_inverted_index.adequado, | 177 |
| abstract_inverted_index.alimentar | 281 |
| abstract_inverted_index.alimentos | 7, 247 |
| abstract_inverted_index.aplicados | 144 |
| abstract_inverted_index.calórica | 5, 245 |
| abstract_inverted_index.criação | 292 |
| abstract_inverted_index.municipal | 286 |
| abstract_inverted_index.múltipla | 58 |
| abstract_inverted_index.múltiplo | 142 |
| abstract_inverted_index.observada | 193 |
| abstract_inverted_index.perfeita. | 191 |
| abstract_inverted_index.preditivo | 261 |
| abstract_inverted_index.públicas | 295 |
| abstract_inverted_index.realizada | 25 |
| abstract_inverted_index.registros | 73 |
| abstract_inverted_index.relação | 250 |
| abstract_inverted_index.resíduos | 109, 182 |
| abstract_inverted_index.subsidiar | 290 |
| abstract_inverted_index.Familiares | 52 |
| abstract_inverted_index.Resultados | 171 |
| abstract_inverted_index.apresentam | 240 |
| abstract_inverted_index.contribuir | 275 |
| abstract_inverted_index.estimativa | 18 |
| abstract_inverted_index.fortalecer | 288 |
| abstract_inverted_index.mensurados | 119 |
| abstract_inverted_index.políticas | 294 |
| abstract_inverted_index.predição | 33 |
| abstract_inverted_index.promoção | 298 |
| abstract_inverted_index.raça/cor, | 87 |
| abstract_inverted_index.regressão | 56, 140 |
| abstract_inverted_index.saudável. | 301 |
| abstract_inverted_index.semelhante | 157 |
| abstract_inverted_index.variáveis | 81 |
| abstract_inverted_index.2017-2018). | 54 |
| abstract_inverted_index.Conclusões | 257 |
| abstract_inverted_index.Orçamentos | 51 |
| abstract_inverted_index.adequação | 103 |
| abstract_inverted_index.alimentares | 74 |
| abstract_inverted_index.coeficiente | 127 |
| abstract_inverted_index.construído | 34 |
| abstract_inverted_index.diferenças | 263 |
| abstract_inverted_index.diretamente | 120 |
| abstract_inverted_index.estimativas | 199, 217, 242, 272 |
| abstract_inverted_index.federação | 91 |
| abstract_inverted_index.geográfica | 94 |
| abstract_inverted_index.indivíduos | 41 |
| abstract_inverted_index.mostrado-se | 176 |
| abstract_inverted_index.municípios | 13, 23, 228, 253, 269 |
| abstract_inverted_index.proporção | 188 |
| abstract_inverted_index.urbanidade, | 88 |
| abstract_inverted_index.apresentando | 178 |
| abstract_inverted_index.brasileiros. | 14, 270 |
| abstract_inverted_index.coeficientes | 134 |
| abstract_inverted_index.comparação | 112 |
| abstract_inverted_index.estatístico | 31, 175 |
| abstract_inverted_index.municípios. | 170 |
| abstract_inverted_index.alimentação | 300 |
| abstract_inverted_index.concordância | 189 |
| abstract_inverted_index.escolaridade, | 86 |
| abstract_inverted_index.localização | 93 |
| abstract_inverted_index.monitoramento | 278 |
| abstract_inverted_index.participantes | 47 |
| abstract_inverted_index.Florianópolis | 214 |
| abstract_inverted_index.distribuição | 179, 197 |
| abstract_inverted_index.participação | 4, 244 |
| abstract_inverted_index.heterogeneidade | 195 |
| abstract_inverted_index.ultraprocessados | 8, 248, 283 |
| abstract_inverted_index.preditoras | 82 |
| abstract_inverted_index.sociodemográficos | 147 |
| abstract_inverted_index.brilho-concordância | 129 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.21516206 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |