European Wide Forest Classification Based on Sentinel-1 Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13030337
The constellation of two Sentinel-1 satellites provides an unprecedented coverage of Synthetic Aperture Radar (SAR) data at high spatial (20 m) and temporal (2 to 6 days over Europe) resolution. The availability of dense time series enables the analysis of the SAR temporal signatures and exploitation of these signatures for classification purposes. Frequent backscatter observations allow derivation of temporally filtered time series that reinforce the effect of changes in vegetation phenology by limiting the influence of short-term changes related to environmental conditions. Recent studies have already shown the potential of multitemporal Sentinel-1 data for forest mapping, forest type classification (coniferous or broadleaved forest) as well as for derivation of phenological variables at local to national scales. In the present study, we tested the viability of a recently published multi-temporal SAR classification method for continental scale forest mapping by applying it over Europe and evaluating the derived forest type and tree cover density maps against the European-wide Copernicus High Resolution Layers (HRL) forest datasets and national-scale forest maps from twelve countries. The comparison with the Copernicus HRL datasets revealed high correspondence over the majority of the European continent with overall accuracies of 86.1% and 73.2% for the forest/non-forest and forest type maps, respectively, and a Pearson correlation coefficient of 0.83 for tree cover density map. Moreover, the evaluation of both datasets against the national forest maps showed that the obtained accuracies of Sentinel-1 forest maps are almost within range of the HRL datasets. The Sentinel-1 forest/non-forest and forest type maps obtained average overall accuracies of 88.2% and 82.7%, respectively, as compared to 90.0% and 87.2% obtained by the Copernicus HRL datasets. This result is especially promising due to the facts that these maps can be produced with a high degree of automation and that only a single year of Sentinel-1 data is required as opposed to the Copernicus HRL forest datasets that are updated every three years.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13030337
- https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681
- OA Status
- gold
- Cited By
- 55
- References
- 40
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3125019278
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3125019278Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13030337Digital Object Identifier
- Title
-
European Wide Forest Classification Based on Sentinel-1 DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-20Full publication date if available
- Authors
-
Alena Dostálová, Mait Lang, Jānis Ivanovs, Lars T. Waser, Wolfgang WagnerList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13030337Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681Direct OA link when available
- Concepts
-
Remote sensing, Synthetic aperture radar, Scale (ratio), Environmental science, Random forest, Geography, Physical geography, Cartography, Computer science, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
55Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 13, 2024: 10, 2023: 13, 2022: 14, 2021: 5Per-year citation counts (last 5 years)
- References (count)
-
40Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3125019278 |
|---|---|
| doi | https://doi.org/10.3390/rs13030337 |
| ids.doi | https://doi.org/10.3390/rs13030337 |
| ids.mag | 3125019278 |
| ids.openalex | https://openalex.org/W3125019278 |
| fwci | 3.81149598 |
| type | article |
| title | European Wide Forest Classification Based on Sentinel-1 Data |
| biblio.issue | 3 |
| biblio.volume | 13 |
| biblio.last_page | 337 |
| biblio.first_page | 337 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T10801 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 1901 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2050 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6420678496360779 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C87360688 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5598569512367249 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[1].display_name | Synthetic aperture radar |
| concepts[2].id | https://openalex.org/C2778755073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5252285003662109 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[2].display_name | Scale (ratio) |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5215672850608826 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C169258074 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5144784450531006 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[4].display_name | Random forest |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.36467084288597107 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C100970517 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3476002812385559 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52107 |
| concepts[6].display_name | Physical geography |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21337494254112244 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16197198629379272 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.6420678496360779 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[1].score | 0.5598569512367249 |
| keywords[1].display_name | Synthetic aperture radar |
| keywords[2].id | https://openalex.org/keywords/scale |
| keywords[2].score | 0.5252285003662109 |
| keywords[2].display_name | Scale (ratio) |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5215672850608826 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/random-forest |
| keywords[4].score | 0.5144784450531006 |
| keywords[4].display_name | Random forest |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.36467084288597107 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/physical-geography |
| keywords[6].score | 0.3476002812385559 |
| keywords[6].display_name | Physical geography |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.21337494254112244 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.16197198629379272 |
| keywords[8].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.3390/rs13030337 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13030337 |
| locations[1].id | pmh:oai:doaj.org/article:1c403da621c1494a84fc7aec03c445b4 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 13, Iss 3, p 337 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/1c403da621c1494a84fc7aec03c445b4 |
| locations[2].id | pmh:oai:dora:wsl_26074 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400127 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DORA Eawag (Swiss Federal Institute of Aquatic Science and Technology (Eawag)) |
| locations[2].source.host_organization | https://openalex.org/I63664421 |
| locations[2].source.host_organization_name | Swiss Federal Institute of Aquatic Science and Technology |
| locations[2].source.host_organization_lineage | https://openalex.org/I63664421 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A26074 |
| locations[3].id | pmh:oai:mdpi.com:/2072-4292/13/3/337/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Remote Sensing; Volume 13; Issue 3; Pages: 337 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/rs13030337 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5011289501 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4738-211X |
| authorships[0].author.display_name | Alena Dostálová |
| authorships[0].countries | AT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145847075 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geodesy and Geoinformation, Vienna University of Technology, 1040 Vienna, Austria |
| authorships[0].institutions[0].id | https://openalex.org/I145847075 |
| authorships[0].institutions[0].ror | https://ror.org/04d836q62 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145847075 |
| authorships[0].institutions[0].country_code | AT |
| authorships[0].institutions[0].display_name | TU Wien |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alena Dostálová |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Geodesy and Geoinformation, Vienna University of Technology, 1040 Vienna, Austria |
| authorships[1].author.id | https://openalex.org/A5042055361 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0951-7933 |
| authorships[1].author.display_name | Mait Lang |
| authorships[1].countries | EE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I19409027 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[1].affiliations[1].raw_affiliation_string | Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[1].institutions[0].id | https://openalex.org/I19409027 |
| authorships[1].institutions[0].ror | https://ror.org/00s67c790 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I19409027 |
| authorships[1].institutions[0].country_code | EE |
| authorships[1].institutions[0].display_name | Estonian University of Life Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I2802841028 |
| authorships[1].institutions[1].ror | https://ror.org/04mc23283 |
| authorships[1].institutions[1].type | archive |
| authorships[1].institutions[1].lineage | https://openalex.org/I172656520, https://openalex.org/I2802841028, https://openalex.org/I56085075 |
| authorships[1].institutions[1].country_code | EE |
| authorships[1].institutions[1].display_name | Tartu Observatory |
| authorships[1].institutions[2].id | https://openalex.org/I56085075 |
| authorships[1].institutions[2].ror | https://ror.org/03z77qz90 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I56085075 |
| authorships[1].institutions[2].country_code | EE |
| authorships[1].institutions[2].display_name | University of Tartu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Mait Lang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia, Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia |
| authorships[2].author.id | https://openalex.org/A5003802327 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1700-4433 |
| authorships[2].author.display_name | Jānis Ivanovs |
| authorships[2].countries | LV |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210136527 |
| authorships[2].affiliations[0].raw_affiliation_string | Latvian State Forest Research Institute 'Silava', 2169 Salaspils, Latvia |
| authorships[2].institutions[0].id | https://openalex.org/I4210136527 |
| authorships[2].institutions[0].ror | https://ror.org/03kx37d46 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210136527 |
| authorships[2].institutions[0].country_code | LV |
| authorships[2].institutions[0].display_name | Latvian State Forest Research Institute "Silava" |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Janis Ivanovs |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Latvian State Forest Research Institute 'Silava', 2169 Salaspils, Latvia |
| authorships[3].author.id | https://openalex.org/A5087039641 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2609-9147 |
| authorships[3].author.display_name | Lars T. Waser |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800262456 |
| authorships[3].affiliations[0].raw_affiliation_string | Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I2800262456 |
| authorships[3].institutions[0].ror | https://ror.org/04bs5yc70 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I2800262456 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | Swiss Federal Institute for Forest, Snow and Landscape Research |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lars T. Waser |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland |
| authorships[4].author.id | https://openalex.org/A5066754586 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7704-6857 |
| authorships[4].author.display_name | Wolfgang Wagner |
| authorships[4].countries | AT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145847075 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Geodesy and Geoinformation, Vienna University of Technology, 1040 Vienna, Austria |
| authorships[4].institutions[0].id | https://openalex.org/I145847075 |
| authorships[4].institutions[0].ror | https://ror.org/04d836q62 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145847075 |
| authorships[4].institutions[0].country_code | AT |
| authorships[4].institutions[0].display_name | TU Wien |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wolfgang Wagner |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Geodesy and Geoinformation, Vienna University of Technology, 1040 Vienna, Austria |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-02-01T00:00:00 |
| display_name | European Wide Forest Classification Based on Sentinel-1 Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W3193043704, https://openalex.org/W4386259002, https://openalex.org/W1546989560, https://openalex.org/W3171520305, https://openalex.org/W3135126032, https://openalex.org/W1924178503, https://openalex.org/W4308716060, https://openalex.org/W4252699458, https://openalex.org/W2139939267, https://openalex.org/W1974511032 |
| cited_by_count | 55 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 13 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 14 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/rs13030337 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13030337 |
| primary_location.id | doi:10.3390/rs13030337 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/3/337/pdf?version=1611550681 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13030337 |
| publication_date | 2021-01-20 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2028160362, https://openalex.org/W2163989786, https://openalex.org/W2072911570, https://openalex.org/W6725484212, https://openalex.org/W2808172145, https://openalex.org/W2130887802, https://openalex.org/W2213155418, https://openalex.org/W2482464033, https://openalex.org/W2782548987, https://openalex.org/W2014187500, https://openalex.org/W1981213426, https://openalex.org/W6758831501, https://openalex.org/W3092314016, https://openalex.org/W2785736744, https://openalex.org/W2808814120, https://openalex.org/W2104890660, https://openalex.org/W2122673356, https://openalex.org/W2112735317, https://openalex.org/W2101354384, https://openalex.org/W1984670836, https://openalex.org/W2907323557, https://openalex.org/W2073527340, https://openalex.org/W2904678720, https://openalex.org/W1991236946, https://openalex.org/W2165742797, https://openalex.org/W2796554989, https://openalex.org/W3047134956, https://openalex.org/W2912501581, https://openalex.org/W2418810498, https://openalex.org/W3022790324, https://openalex.org/W2005164184, https://openalex.org/W2097816127, https://openalex.org/W2153423920, https://openalex.org/W2018516513, https://openalex.org/W2901056173, https://openalex.org/W2169087452, https://openalex.org/W2741346052, https://openalex.org/W2511334384, https://openalex.org/W2911729132, https://openalex.org/W3034401742 |
| referenced_works_count | 40 |
| abstract_inverted_index.6 | 25 |
| abstract_inverted_index.a | 125, 203, 286, 294 |
| abstract_inverted_index.(2 | 23 |
| abstract_inverted_index.In | 116 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.as | 103, 105, 258, 302 |
| abstract_inverted_index.at | 16, 111 |
| abstract_inverted_index.be | 283 |
| abstract_inverted_index.by | 71, 137, 265 |
| abstract_inverted_index.in | 68 |
| abstract_inverted_index.is | 272, 300 |
| abstract_inverted_index.it | 139 |
| abstract_inverted_index.m) | 20 |
| abstract_inverted_index.of | 2, 10, 32, 39, 46, 57, 66, 75, 89, 108, 124, 183, 190, 207, 217, 230, 238, 253, 289, 297 |
| abstract_inverted_index.or | 100 |
| abstract_inverted_index.to | 24, 79, 113, 260, 276, 304 |
| abstract_inverted_index.we | 120 |
| abstract_inverted_index.(20 | 19 |
| abstract_inverted_index.HRL | 175, 240, 268, 307 |
| abstract_inverted_index.SAR | 41, 129 |
| abstract_inverted_index.The | 0, 30, 170, 242 |
| abstract_inverted_index.and | 21, 44, 142, 148, 163, 192, 197, 202, 245, 255, 262, 291 |
| abstract_inverted_index.are | 234, 311 |
| abstract_inverted_index.can | 282 |
| abstract_inverted_index.due | 275 |
| abstract_inverted_index.for | 49, 93, 106, 132, 194, 209 |
| abstract_inverted_index.the | 37, 40, 64, 73, 87, 117, 122, 144, 154, 173, 181, 184, 195, 215, 221, 227, 239, 266, 277, 305 |
| abstract_inverted_index.two | 3 |
| abstract_inverted_index.0.83 | 208 |
| abstract_inverted_index.High | 157 |
| abstract_inverted_index.This | 270 |
| abstract_inverted_index.both | 218 |
| abstract_inverted_index.data | 15, 92, 299 |
| abstract_inverted_index.days | 26 |
| abstract_inverted_index.from | 167 |
| abstract_inverted_index.have | 84 |
| abstract_inverted_index.high | 17, 178, 287 |
| abstract_inverted_index.map. | 213 |
| abstract_inverted_index.maps | 152, 166, 224, 233, 248, 281 |
| abstract_inverted_index.only | 293 |
| abstract_inverted_index.over | 27, 140, 180 |
| abstract_inverted_index.that | 62, 226, 279, 292, 310 |
| abstract_inverted_index.time | 34, 60 |
| abstract_inverted_index.tree | 149, 210 |
| abstract_inverted_index.type | 97, 147, 199, 247 |
| abstract_inverted_index.well | 104 |
| abstract_inverted_index.with | 172, 187, 285 |
| abstract_inverted_index.year | 296 |
| abstract_inverted_index.(HRL) | 160 |
| abstract_inverted_index.(SAR) | 14 |
| abstract_inverted_index.73.2% | 193 |
| abstract_inverted_index.86.1% | 191 |
| abstract_inverted_index.87.2% | 263 |
| abstract_inverted_index.88.2% | 254 |
| abstract_inverted_index.90.0% | 261 |
| abstract_inverted_index.Radar | 13 |
| abstract_inverted_index.allow | 55 |
| abstract_inverted_index.cover | 150, 211 |
| abstract_inverted_index.dense | 33 |
| abstract_inverted_index.every | 313 |
| abstract_inverted_index.facts | 278 |
| abstract_inverted_index.local | 112 |
| abstract_inverted_index.maps, | 200 |
| abstract_inverted_index.range | 237 |
| abstract_inverted_index.scale | 134 |
| abstract_inverted_index.shown | 86 |
| abstract_inverted_index.these | 47, 280 |
| abstract_inverted_index.three | 314 |
| abstract_inverted_index.82.7%, | 256 |
| abstract_inverted_index.Europe | 141 |
| abstract_inverted_index.Layers | 159 |
| abstract_inverted_index.Recent | 82 |
| abstract_inverted_index.almost | 235 |
| abstract_inverted_index.degree | 288 |
| abstract_inverted_index.effect | 65 |
| abstract_inverted_index.forest | 94, 96, 135, 146, 161, 165, 198, 223, 232, 246, 308 |
| abstract_inverted_index.method | 131 |
| abstract_inverted_index.result | 271 |
| abstract_inverted_index.series | 35, 61 |
| abstract_inverted_index.showed | 225 |
| abstract_inverted_index.single | 295 |
| abstract_inverted_index.study, | 119 |
| abstract_inverted_index.tested | 121 |
| abstract_inverted_index.twelve | 168 |
| abstract_inverted_index.within | 236 |
| abstract_inverted_index.years. | 315 |
| abstract_inverted_index.Europe) | 28 |
| abstract_inverted_index.Pearson | 204 |
| abstract_inverted_index.against | 153, 220 |
| abstract_inverted_index.already | 85 |
| abstract_inverted_index.average | 250 |
| abstract_inverted_index.changes | 67, 77 |
| abstract_inverted_index.density | 151, 212 |
| abstract_inverted_index.derived | 145 |
| abstract_inverted_index.enables | 36 |
| abstract_inverted_index.forest) | 102 |
| abstract_inverted_index.mapping | 136 |
| abstract_inverted_index.opposed | 303 |
| abstract_inverted_index.overall | 188, 251 |
| abstract_inverted_index.present | 118 |
| abstract_inverted_index.related | 78 |
| abstract_inverted_index.scales. | 115 |
| abstract_inverted_index.spatial | 18 |
| abstract_inverted_index.studies | 83 |
| abstract_inverted_index.updated | 312 |
| abstract_inverted_index.Aperture | 12 |
| abstract_inverted_index.European | 185 |
| abstract_inverted_index.Frequent | 52 |
| abstract_inverted_index.analysis | 38 |
| abstract_inverted_index.applying | 138 |
| abstract_inverted_index.compared | 259 |
| abstract_inverted_index.coverage | 9 |
| abstract_inverted_index.datasets | 162, 176, 219, 309 |
| abstract_inverted_index.filtered | 59 |
| abstract_inverted_index.limiting | 72 |
| abstract_inverted_index.majority | 182 |
| abstract_inverted_index.mapping, | 95 |
| abstract_inverted_index.national | 114, 222 |
| abstract_inverted_index.obtained | 228, 249, 264 |
| abstract_inverted_index.produced | 284 |
| abstract_inverted_index.provides | 6 |
| abstract_inverted_index.recently | 126 |
| abstract_inverted_index.required | 301 |
| abstract_inverted_index.revealed | 177 |
| abstract_inverted_index.temporal | 22, 42 |
| abstract_inverted_index.Moreover, | 214 |
| abstract_inverted_index.Synthetic | 11 |
| abstract_inverted_index.continent | 186 |
| abstract_inverted_index.datasets. | 241, 269 |
| abstract_inverted_index.influence | 74 |
| abstract_inverted_index.phenology | 70 |
| abstract_inverted_index.potential | 88 |
| abstract_inverted_index.promising | 274 |
| abstract_inverted_index.published | 127 |
| abstract_inverted_index.purposes. | 51 |
| abstract_inverted_index.reinforce | 63 |
| abstract_inverted_index.variables | 110 |
| abstract_inverted_index.viability | 123 |
| abstract_inverted_index.Copernicus | 156, 174, 267, 306 |
| abstract_inverted_index.Resolution | 158 |
| abstract_inverted_index.Sentinel-1 | 4, 91, 231, 243, 298 |
| abstract_inverted_index.accuracies | 189, 229, 252 |
| abstract_inverted_index.automation | 290 |
| abstract_inverted_index.comparison | 171 |
| abstract_inverted_index.countries. | 169 |
| abstract_inverted_index.derivation | 56, 107 |
| abstract_inverted_index.especially | 273 |
| abstract_inverted_index.evaluating | 143 |
| abstract_inverted_index.evaluation | 216 |
| abstract_inverted_index.satellites | 5 |
| abstract_inverted_index.short-term | 76 |
| abstract_inverted_index.signatures | 43, 48 |
| abstract_inverted_index.temporally | 58 |
| abstract_inverted_index.vegetation | 69 |
| abstract_inverted_index.(coniferous | 99 |
| abstract_inverted_index.backscatter | 53 |
| abstract_inverted_index.broadleaved | 101 |
| abstract_inverted_index.coefficient | 206 |
| abstract_inverted_index.conditions. | 81 |
| abstract_inverted_index.continental | 133 |
| abstract_inverted_index.correlation | 205 |
| abstract_inverted_index.resolution. | 29 |
| abstract_inverted_index.availability | 31 |
| abstract_inverted_index.exploitation | 45 |
| abstract_inverted_index.observations | 54 |
| abstract_inverted_index.phenological | 109 |
| abstract_inverted_index.European-wide | 155 |
| abstract_inverted_index.constellation | 1 |
| abstract_inverted_index.environmental | 80 |
| abstract_inverted_index.multitemporal | 90 |
| abstract_inverted_index.respectively, | 201, 257 |
| abstract_inverted_index.unprecedented | 8 |
| abstract_inverted_index.classification | 50, 98, 130 |
| abstract_inverted_index.correspondence | 179 |
| abstract_inverted_index.multi-temporal | 128 |
| abstract_inverted_index.national-scale | 164 |
| abstract_inverted_index.forest/non-forest | 196, 244 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5011289501 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I145847075 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.94002966 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |