Evaluating CNN Models and Optimization Techniques for Quality Classification of Dried Chili Peppers (Capsicum annuum L.) Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.61467/2007.1558.2024.v15i2.462
This paper analyzes Convolutional Neural Network (CNN) models for classifying dried chili pepper quality. The models categorize images into five categories: “Extra”, “First Class”, “Second Class”, “Trash”, and “Empty”, each representing different qualities and scenarios in a sorting machine. We compared architectures from the Torchvision library, including ResNet, ResNeXt, Wide_ResNet, and RegNet using Transfer Learning (TL) in a feature extraction approach. All models employ residual blocks, an innovative technique enhancing deep learning performance. The models were evaluated using crossvalidation and metrics such as Precision, Recall, Specificity, F1-score, Geometric_mean, Index of Balanced Accuracy, and the Matthews Correlation Coefficient. They were trained using SGD, Adagrad, and Adam optimizers. Our findings suggest that ResNet-152, trained with the Adagrad optimizer, achieved the highest mean validation accuracy of 96.62%. The selected model can assist agricultural producers in classifying their products according to international standards.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.61467/2007.1558.2024.v15i2.462
- OA Status
- diamond
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400822632
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400822632Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.61467/2007.1558.2024.v15i2.462Digital Object Identifier
- Title
-
Evaluating CNN Models and Optimization Techniques for Quality Classification of Dried Chili Peppers (Capsicum annuum L.)Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-12Full publication date if available
- Authors
-
Daniela López-Betancur, Tonatiuh Saucedo-Anaya, Carlos Guerrero-Méndez, David Navarro-Solís, Luis Silva-Acosta, Antonio Robles-Guerrero, Salvador Gómez-JiménezList of authors in order
- Landing page
-
https://doi.org/10.61467/2007.1558.2024.v15i2.462Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.61467/2007.1558.2024.v15i2.462Direct OA link when available
- Concepts
-
Capsicum annuum, Chili pepper, Horticulture, Botany, Computer science, Biology, PepperTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400822632 |
|---|---|
| doi | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| ids.doi | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| ids.openalex | https://openalex.org/W4400822632 |
| fwci | 0.89121286 |
| type | article |
| title | Evaluating CNN Models and Optimization Techniques for Quality Classification of Dried Chili Peppers (Capsicum annuum L.) |
| biblio.issue | 2 |
| biblio.volume | 15 |
| biblio.last_page | 25 |
| biblio.first_page | 13 |
| topics[0].id | https://openalex.org/T10640 |
| topics[0].field.id | https://openalex.org/fields/16 |
| topics[0].field.display_name | Chemistry |
| topics[0].score | 0.9607999920845032 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1602 |
| topics[0].subfield.display_name | Analytical Chemistry |
| topics[0].display_name | Spectroscopy and Chemometric Analyses |
| topics[1].id | https://openalex.org/T11667 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.960099995136261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced Chemical Sensor Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2992961547 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9345751404762268 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1380 |
| concepts[0].display_name | Capsicum annuum |
| concepts[1].id | https://openalex.org/C3018930857 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7901007533073425 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q165199 |
| concepts[1].display_name | Chili pepper |
| concepts[2].id | https://openalex.org/C144027150 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5945974588394165 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q48803 |
| concepts[2].display_name | Horticulture |
| concepts[3].id | https://openalex.org/C59822182 |
| concepts[3].level | 1 |
| concepts[3].score | 0.36036837100982666 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[3].display_name | Botany |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3337894678115845 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2812708616256714 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| concepts[6].id | https://openalex.org/C2776242653 |
| concepts[6].level | 2 |
| concepts[6].score | 0.05618211627006531 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22907699 |
| concepts[6].display_name | Pepper |
| keywords[0].id | https://openalex.org/keywords/capsicum-annuum |
| keywords[0].score | 0.9345751404762268 |
| keywords[0].display_name | Capsicum annuum |
| keywords[1].id | https://openalex.org/keywords/chili-pepper |
| keywords[1].score | 0.7901007533073425 |
| keywords[1].display_name | Chili pepper |
| keywords[2].id | https://openalex.org/keywords/horticulture |
| keywords[2].score | 0.5945974588394165 |
| keywords[2].display_name | Horticulture |
| keywords[3].id | https://openalex.org/keywords/botany |
| keywords[3].score | 0.36036837100982666 |
| keywords[3].display_name | Botany |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.3337894678115845 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.2812708616256714 |
| keywords[5].display_name | Biology |
| keywords[6].id | https://openalex.org/keywords/pepper |
| keywords[6].score | 0.05618211627006531 |
| keywords[6].display_name | Pepper |
| language | en |
| locations[0].id | doi:10.61467/2007.1558.2024.v15i2.462 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404675559 |
| locations[0].source.issn | 2007-1558 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2007-1558 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| locations[0].landing_page_url | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5060212159 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0710-6062 |
| authorships[0].author.display_name | Daniela López-Betancur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniela Lopez-Betancur |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5093745920 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1234-4532 |
| authorships[1].author.display_name | Tonatiuh Saucedo-Anaya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Tonatiuh Saucedo-Anaya |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5013105546 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0721-8515 |
| authorships[2].author.display_name | Carlos Guerrero-Méndez |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carlos Guerrero-Mendez |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5072863286 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6099-0814 |
| authorships[3].author.display_name | David Navarro-Solís |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | David Navarro-Solís |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5010737721 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Luis Silva-Acosta |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Luis Silva-Acosta |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5086682743 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3226-3038 |
| authorships[5].author.display_name | Antonio Robles-Guerrero |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Antonio Robles-Guerrero |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5023697588 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6654-3313 |
| authorships[6].author.display_name | Salvador Gómez-Jiménez |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Salvador Gomez-Jimenez |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating CNN Models and Optimization Techniques for Quality Classification of Dried Chili Peppers (Capsicum annuum L.) |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10640 |
| primary_topic.field.id | https://openalex.org/fields/16 |
| primary_topic.field.display_name | Chemistry |
| primary_topic.score | 0.9607999920845032 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1602 |
| primary_topic.subfield.display_name | Analytical Chemistry |
| primary_topic.display_name | Spectroscopy and Chemometric Analyses |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W3085707545, https://openalex.org/W3157387701, https://openalex.org/W2318323900, https://openalex.org/W4391686898, https://openalex.org/W2240795072, https://openalex.org/W2287833000, https://openalex.org/W2225419761, https://openalex.org/W4367469407, https://openalex.org/W4213110433 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.61467/2007.1558.2024.v15i2.462 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404675559 |
| best_oa_location.source.issn | 2007-1558 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2007-1558 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| primary_location.id | doi:10.61467/2007.1558.2024.v15i2.462 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404675559 |
| primary_location.source.issn | 2007-1558 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2007-1558 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| primary_location.landing_page_url | https://doi.org/10.61467/2007.1558.2024.v15i2.462 |
| publication_date | 2024-06-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 57 |
| abstract_inverted_index.We | 39 |
| abstract_inverted_index.an | 66 |
| abstract_inverted_index.as | 82 |
| abstract_inverted_index.in | 35, 56, 131 |
| abstract_inverted_index.of | 89, 122 |
| abstract_inverted_index.to | 136 |
| abstract_inverted_index.All | 61 |
| abstract_inverted_index.Our | 106 |
| abstract_inverted_index.The | 14, 73, 124 |
| abstract_inverted_index.and | 27, 33, 50, 79, 92, 103 |
| abstract_inverted_index.can | 127 |
| abstract_inverted_index.for | 8 |
| abstract_inverted_index.the | 43, 93, 113, 117 |
| abstract_inverted_index.(TL) | 55 |
| abstract_inverted_index.Adam | 104 |
| abstract_inverted_index.SGD, | 101 |
| abstract_inverted_index.They | 97 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 70 |
| abstract_inverted_index.each | 29 |
| abstract_inverted_index.five | 19 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.into | 18 |
| abstract_inverted_index.mean | 119 |
| abstract_inverted_index.such | 81 |
| abstract_inverted_index.that | 109 |
| abstract_inverted_index.were | 75, 98 |
| abstract_inverted_index.with | 112 |
| abstract_inverted_index.(CNN) | 6 |
| abstract_inverted_index.Index | 88 |
| abstract_inverted_index.chili | 11 |
| abstract_inverted_index.dried | 10 |
| abstract_inverted_index.model | 126 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.their | 133 |
| abstract_inverted_index.using | 52, 77, 100 |
| abstract_inverted_index.Neural | 4 |
| abstract_inverted_index.RegNet | 51 |
| abstract_inverted_index.assist | 128 |
| abstract_inverted_index.employ | 63 |
| abstract_inverted_index.images | 17 |
| abstract_inverted_index.models | 7, 15, 62, 74 |
| abstract_inverted_index.pepper | 12 |
| abstract_inverted_index.96.62%. | 123 |
| abstract_inverted_index.Adagrad | 114 |
| abstract_inverted_index.Network | 5 |
| abstract_inverted_index.Recall, | 84 |
| abstract_inverted_index.ResNet, | 47 |
| abstract_inverted_index.blocks, | 65 |
| abstract_inverted_index.feature | 58 |
| abstract_inverted_index.highest | 118 |
| abstract_inverted_index.metrics | 80 |
| abstract_inverted_index.sorting | 37 |
| abstract_inverted_index.suggest | 108 |
| abstract_inverted_index.trained | 99, 111 |
| abstract_inverted_index.Adagrad, | 102 |
| abstract_inverted_index.Balanced | 90 |
| abstract_inverted_index.Learning | 54 |
| abstract_inverted_index.Matthews | 94 |
| abstract_inverted_index.ResNeXt, | 48 |
| abstract_inverted_index.Transfer | 53 |
| abstract_inverted_index.accuracy | 121 |
| abstract_inverted_index.achieved | 116 |
| abstract_inverted_index.analyzes | 2 |
| abstract_inverted_index.compared | 40 |
| abstract_inverted_index.findings | 107 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.library, | 45 |
| abstract_inverted_index.machine. | 38 |
| abstract_inverted_index.products | 134 |
| abstract_inverted_index.quality. | 13 |
| abstract_inverted_index.residual | 64 |
| abstract_inverted_index.selected | 125 |
| abstract_inverted_index.“First | 22 |
| abstract_inverted_index.Accuracy, | 91 |
| abstract_inverted_index.Class”, | 23, 25 |
| abstract_inverted_index.F1-score, | 86 |
| abstract_inverted_index.according | 135 |
| abstract_inverted_index.approach. | 60 |
| abstract_inverted_index.different | 31 |
| abstract_inverted_index.enhancing | 69 |
| abstract_inverted_index.evaluated | 76 |
| abstract_inverted_index.including | 46 |
| abstract_inverted_index.producers | 130 |
| abstract_inverted_index.qualities | 32 |
| abstract_inverted_index.scenarios | 34 |
| abstract_inverted_index.technique | 68 |
| abstract_inverted_index.“Second | 24 |
| abstract_inverted_index.Precision, | 83 |
| abstract_inverted_index.categorize | 16 |
| abstract_inverted_index.extraction | 59 |
| abstract_inverted_index.innovative | 67 |
| abstract_inverted_index.optimizer, | 115 |
| abstract_inverted_index.standards. | 138 |
| abstract_inverted_index.validation | 120 |
| abstract_inverted_index.Correlation | 95 |
| abstract_inverted_index.ResNet-152, | 110 |
| abstract_inverted_index.Torchvision | 44 |
| abstract_inverted_index.categories: | 20 |
| abstract_inverted_index.classifying | 9, 132 |
| abstract_inverted_index.optimizers. | 105 |
| abstract_inverted_index.Coefficient. | 96 |
| abstract_inverted_index.Specificity, | 85 |
| abstract_inverted_index.Wide_ResNet, | 49 |
| abstract_inverted_index.agricultural | 129 |
| abstract_inverted_index.performance. | 72 |
| abstract_inverted_index.representing | 30 |
| abstract_inverted_index.“Empty”, | 28 |
| abstract_inverted_index.“Extra”, | 21 |
| abstract_inverted_index.“Trash”, | 26 |
| abstract_inverted_index.Convolutional | 3 |
| abstract_inverted_index.architectures | 41 |
| abstract_inverted_index.international | 137 |
| abstract_inverted_index.Geometric_mean, | 87 |
| abstract_inverted_index.crossvalidation | 78 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.64428191 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |