Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3389/fnbot.2021.692183
Wearable robotic exoskeletons have emerged as an exciting new treatment tool for disorders affecting mobility; however, the human–machine interface, used by the patient for device control, requires further improvement before robotic assistance and rehabilitation can be widely adopted. One method, made possible through advancements in machine learning technology, is the use of bioelectrical signals, such as electroencephalography (EEG) and electromyography (EMG), to classify the user's actions and intentions. While classification using these signals has been demonstrated for many relevant control tasks, such as motion intention detection and gesture recognition, challenges in decoding the bioelectrical signals have caused researchers to seek methods for improving the accuracy of these models. One such method is the use of EEG–EMG fusion, creating a classification model that decodes information from both EEG and EMG signals simultaneously to increase the amount of available information. So far, EEG–EMG fusion has been implemented using traditional machine learning methods that rely on manual feature extraction; however, new machine learning methods have emerged that can automatically extract relevant information from a dataset, which may prove beneficial during EEG–EMG fusion. In this study, Convolutional Neural Network (CNN) models were developed using combined EEG–EMG inputs to determine if they have potential as a method of EEG–EMG fusion that automatically extracts relevant information from both signals simultaneously. EEG and EMG signals were recorded during elbow flexion–extension and used to develop CNN models based on time–frequency (spectrogram) and time (filtered signal) domain image inputs. The results show a mean accuracy of 80.51 ± 8.07% for a three-class output (33.33% chance level), with an F-score of 80.74%, using time–frequency domain-based models. This work demonstrates the viability of CNNs as a new method of EEG–EMG fusion and evaluates different signal representations to determine the best implementation of a combined EEG–EMG CNN. It leverages modern machine learning methods to advance EEG–EMG fusion, which will ultimately lead to improvements in the usability of wearable robotic exoskeletons.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fnbot.2021.692183
- https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdf
- OA Status
- gold
- Cited By
- 19
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3215846288
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3215846288Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fnbot.2021.692183Digital Object Identifier
- Title
-
Evaluating Convolutional Neural Networks as a Method of EEG–EMG FusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-23Full publication date if available
- Authors
-
Jacob Tryon, Ana Luisa TrejosList of authors in order
- Landing page
-
https://doi.org/10.3389/fnbot.2021.692183Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdfDirect OA link when available
- Concepts
-
Computer science, Electroencephalography, Convolutional neural network, Artificial intelligence, Pattern recognition (psychology), Feature extraction, Brain–computer interface, Electromyography, Exoskeleton, Speech recognition, Simulation, Physical medicine and rehabilitation, Psychiatry, Psychology, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 5, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3215846288 |
|---|---|
| doi | https://doi.org/10.3389/fnbot.2021.692183 |
| ids.doi | https://doi.org/10.3389/fnbot.2021.692183 |
| ids.mag | 3215846288 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34887739 |
| ids.openalex | https://openalex.org/W3215846288 |
| fwci | 1.47705861 |
| type | article |
| title | Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion |
| awards[0].id | https://openalex.org/G6700294551 |
| awards[0].funder_id | https://openalex.org/F4320319948 |
| awards[0].display_name | |
| awards[0].funder_award_id | ER14-10-159 |
| awards[0].funder_display_name | Ontario Ministry of Economic Development and Innovation |
| awards[1].id | https://openalex.org/G4549356809 |
| awards[1].funder_id | https://openalex.org/F4320319952 |
| awards[1].display_name | |
| awards[1].funder_award_id | 35152 65152 |
| awards[1].funder_display_name | Canada Foundation for Innovation |
| awards[2].id | https://openalex.org/G5447447633 |
| awards[2].funder_id | https://openalex.org/F4320334593 |
| awards[2].display_name | |
| awards[2].funder_award_id | RGPIN-2020-05648 |
| awards[2].funder_display_name | Natural Sciences and Engineering Research Council of Canada |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 692183 |
| biblio.first_page | 692183 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Muscle activation and electromyography studies |
| topics[2].id | https://openalex.org/T11707 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9871000051498413 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1709 |
| topics[2].subfield.display_name | Human-Computer Interaction |
| topics[2].display_name | Gaze Tracking and Assistive Technology |
| funders[0].id | https://openalex.org/F4320313340 |
| funders[0].ror | |
| funders[0].display_name | Ontario Research Foundation |
| funders[1].id | https://openalex.org/F4320319948 |
| funders[1].ror | https://ror.org/01pvzn627 |
| funders[1].display_name | Ontario Ministry of Economic Development and Innovation |
| funders[2].id | https://openalex.org/F4320319952 |
| funders[2].ror | https://ror.org/000az4664 |
| funders[2].display_name | Canada Foundation for Innovation |
| funders[3].id | https://openalex.org/F4320321886 |
| funders[3].ror | https://ror.org/03zr1tg88 |
| funders[3].display_name | Ontario Ministry of Research, Innovation and Science |
| funders[4].id | https://openalex.org/F4320334593 |
| funders[4].ror | https://ror.org/01h531d29 |
| funders[4].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8385335206985474 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7809102535247803 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.683058500289917 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6621277332305908 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5645922422409058 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5067086815834045 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C173201364 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5040949583053589 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[6].display_name | Brain–computer interface |
| concepts[7].id | https://openalex.org/C2777515770 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49973106384277344 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q507369 |
| concepts[7].display_name | Electromyography |
| concepts[8].id | https://openalex.org/C146549078 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4137061536312103 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q191944 |
| concepts[8].display_name | Exoskeleton |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41274186968803406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C44154836 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11238273978233337 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[10].display_name | Simulation |
| concepts[11].id | https://openalex.org/C99508421 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08821389079093933 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[11].display_name | Physical medicine and rehabilitation |
| concepts[12].id | https://openalex.org/C118552586 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[12].display_name | Psychiatry |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8385335206985474 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.7809102535247803 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.683058500289917 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6621277332305908 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5645922422409058 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5067086815834045 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[6].score | 0.5040949583053589 |
| keywords[6].display_name | Brain–computer interface |
| keywords[7].id | https://openalex.org/keywords/electromyography |
| keywords[7].score | 0.49973106384277344 |
| keywords[7].display_name | Electromyography |
| keywords[8].id | https://openalex.org/keywords/exoskeleton |
| keywords[8].score | 0.4137061536312103 |
| keywords[8].display_name | Exoskeleton |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.41274186968803406 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/simulation |
| keywords[10].score | 0.11238273978233337 |
| keywords[10].display_name | Simulation |
| keywords[11].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[11].score | 0.08821389079093933 |
| keywords[11].display_name | Physical medicine and rehabilitation |
| language | en |
| locations[0].id | doi:10.3389/fnbot.2021.692183 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S115606517 |
| locations[0].source.issn | 1662-5218 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-5218 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neurorobotics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neurorobotics |
| locations[0].landing_page_url | https://doi.org/10.3389/fnbot.2021.692183 |
| locations[1].id | pmid:34887739 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in neurorobotics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34887739 |
| locations[2].id | pmh:oai:doaj.org/article:9f82f98056e54f37a83739890c551b55 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Neurorobotics, Vol 15 (2021) |
| locations[2].landing_page_url | https://doaj.org/article/9f82f98056e54f37a83739890c551b55 |
| locations[3].id | pmh:oai:ir.lib.uwo.ca:electricalpub-1634 |
| locations[3].is_oa | False |
| locations[3].source | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Electrical and Computer Engineering Publications |
| locations[3].landing_page_url | https://ir.lib.uwo.ca/electricalpub/623 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8649783 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Front Neurorobot |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8649783 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5026439386 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2639-2068 |
| authorships[0].author.display_name | Jacob Tryon |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I125749732 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, Western University, London, ON, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I125749732 |
| authorships[0].institutions[0].ror | https://ror.org/02grkyz14 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125749732 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Western University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jacob Tryon |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Biomedical Engineering, Western University, London, ON, Canada |
| authorships[1].author.id | https://openalex.org/A5003665590 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3616-2891 |
| authorships[1].author.display_name | Ana Luisa Trejos |
| authorships[1].countries | CA |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I125749732 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, Western University, London, ON, Canada |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I125749732 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Electrical and Computer Engineering, Western University, London, ON, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I125749732 |
| authorships[1].institutions[0].ror | https://ror.org/02grkyz14 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125749732 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Western University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ana Luisa Trejos |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, Western University, London, ON, Canada, School of Biomedical Engineering, Western University, London, ON, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2887985348, https://openalex.org/W2401700601, https://openalex.org/W2570835373, https://openalex.org/W3198063775, https://openalex.org/W2901258812, https://openalex.org/W3017269254, https://openalex.org/W2475107902, https://openalex.org/W2557545276, https://openalex.org/W2106231951, https://openalex.org/W2032664813 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3389/fnbot.2021.692183 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S115606517 |
| best_oa_location.source.issn | 1662-5218 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-5218 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neurorobotics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neurorobotics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fnbot.2021.692183 |
| primary_location.id | doi:10.3389/fnbot.2021.692183 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S115606517 |
| primary_location.source.issn | 1662-5218 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-5218 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neurorobotics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fnbot.2021.692183/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neurorobotics |
| primary_location.landing_page_url | https://doi.org/10.3389/fnbot.2021.692183 |
| publication_date | 2021-11-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2891669080, https://openalex.org/W2954214015, https://openalex.org/W2516710120, https://openalex.org/W3083689737, https://openalex.org/W3011962222, https://openalex.org/W2914567046, https://openalex.org/W2947553765, https://openalex.org/W2962879438, https://openalex.org/W2911969890, https://openalex.org/W2794498418, https://openalex.org/W3024547294, https://openalex.org/W2807631444, https://openalex.org/W2950976972, https://openalex.org/W2893038386, https://openalex.org/W2023634800, https://openalex.org/W3110649289, https://openalex.org/W3022003141, https://openalex.org/W1689711448, https://openalex.org/W2095676515, https://openalex.org/W3131912835, https://openalex.org/W2569969175, https://openalex.org/W2944559085, https://openalex.org/W6755865149, https://openalex.org/W6757440445, https://openalex.org/W2043286593, https://openalex.org/W2886903801, https://openalex.org/W2963355311, https://openalex.org/W2997540115, https://openalex.org/W2995576753, https://openalex.org/W2741907166, https://openalex.org/W3004827935, https://openalex.org/W2025503276, https://openalex.org/W2909905004, https://openalex.org/W6783869715, https://openalex.org/W3101735359, https://openalex.org/W6767210499, https://openalex.org/W3093678825, https://openalex.org/W6667248742, https://openalex.org/W2907080401, https://openalex.org/W2823613278, https://openalex.org/W2732754794, https://openalex.org/W2765746460, https://openalex.org/W2905915376, https://openalex.org/W2684229413, https://openalex.org/W2963283402, https://openalex.org/W2921618710, https://openalex.org/W2887224044, https://openalex.org/W3103608651, https://openalex.org/W3101149558, https://openalex.org/W564530069, https://openalex.org/W2567788142, https://openalex.org/W4237569247 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 118, 170, 200, 243, 251, 274, 291 |
| abstract_inverted_index.In | 179 |
| abstract_inverted_index.It | 295 |
| abstract_inverted_index.So | 138 |
| abstract_inverted_index.an | 6, 258 |
| abstract_inverted_index.as | 5, 55, 82, 199, 273 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.if | 195 |
| abstract_inverted_index.in | 44, 90, 311 |
| abstract_inverted_index.is | 48, 111 |
| abstract_inverted_index.of | 51, 105, 114, 135, 202, 246, 260, 271, 277, 290, 314 |
| abstract_inverted_index.on | 152, 230 |
| abstract_inverted_index.to | 61, 98, 131, 193, 225, 285, 301, 309 |
| abstract_inverted_index.± | 248 |
| abstract_inverted_index.CNN | 227 |
| abstract_inverted_index.EEG | 126, 214 |
| abstract_inverted_index.EMG | 128, 216 |
| abstract_inverted_index.One | 38, 108 |
| abstract_inverted_index.The | 240 |
| abstract_inverted_index.and | 32, 58, 66, 86, 127, 215, 223, 233, 280 |
| abstract_inverted_index.can | 34, 164 |
| abstract_inverted_index.for | 11, 23, 76, 101, 250 |
| abstract_inverted_index.has | 73, 142 |
| abstract_inverted_index.may | 173 |
| abstract_inverted_index.new | 8, 157, 275 |
| abstract_inverted_index.the | 16, 21, 49, 63, 92, 103, 112, 133, 269, 287, 312 |
| abstract_inverted_index.use | 50, 113 |
| abstract_inverted_index.CNN. | 294 |
| abstract_inverted_index.CNNs | 272 |
| abstract_inverted_index.This | 266 |
| abstract_inverted_index.been | 74, 143 |
| abstract_inverted_index.best | 288 |
| abstract_inverted_index.both | 125, 211 |
| abstract_inverted_index.far, | 139 |
| abstract_inverted_index.from | 124, 169, 210 |
| abstract_inverted_index.have | 3, 95, 161, 197 |
| abstract_inverted_index.lead | 308 |
| abstract_inverted_index.made | 40 |
| abstract_inverted_index.many | 77 |
| abstract_inverted_index.mean | 244 |
| abstract_inverted_index.rely | 151 |
| abstract_inverted_index.seek | 99 |
| abstract_inverted_index.show | 242 |
| abstract_inverted_index.such | 54, 81, 109 |
| abstract_inverted_index.that | 121, 150, 163, 205 |
| abstract_inverted_index.they | 196 |
| abstract_inverted_index.this | 180 |
| abstract_inverted_index.time | 234 |
| abstract_inverted_index.tool | 10 |
| abstract_inverted_index.used | 19, 224 |
| abstract_inverted_index.were | 187, 218 |
| abstract_inverted_index.will | 306 |
| abstract_inverted_index.with | 257 |
| abstract_inverted_index.work | 267 |
| abstract_inverted_index.(CNN) | 185 |
| abstract_inverted_index.(EEG) | 57 |
| abstract_inverted_index.8.07% | 249 |
| abstract_inverted_index.80.51 | 247 |
| abstract_inverted_index.While | 68 |
| abstract_inverted_index.based | 229 |
| abstract_inverted_index.elbow | 221 |
| abstract_inverted_index.image | 238 |
| abstract_inverted_index.model | 120 |
| abstract_inverted_index.prove | 174 |
| abstract_inverted_index.these | 71, 106 |
| abstract_inverted_index.using | 70, 145, 189, 262 |
| abstract_inverted_index.which | 172, 305 |
| abstract_inverted_index.(EMG), | 60 |
| abstract_inverted_index.Neural | 183 |
| abstract_inverted_index.amount | 134 |
| abstract_inverted_index.before | 29 |
| abstract_inverted_index.caused | 96 |
| abstract_inverted_index.chance | 255 |
| abstract_inverted_index.device | 24 |
| abstract_inverted_index.domain | 237 |
| abstract_inverted_index.during | 176, 220 |
| abstract_inverted_index.fusion | 141, 204, 279 |
| abstract_inverted_index.inputs | 192 |
| abstract_inverted_index.manual | 153 |
| abstract_inverted_index.method | 110, 201, 276 |
| abstract_inverted_index.models | 186, 228 |
| abstract_inverted_index.modern | 297 |
| abstract_inverted_index.motion | 83 |
| abstract_inverted_index.output | 253 |
| abstract_inverted_index.signal | 283 |
| abstract_inverted_index.study, | 181 |
| abstract_inverted_index.tasks, | 80 |
| abstract_inverted_index.user's | 64 |
| abstract_inverted_index.widely | 36 |
| abstract_inverted_index.(33.33% | 254 |
| abstract_inverted_index.80.74%, | 261 |
| abstract_inverted_index.F-score | 259 |
| abstract_inverted_index.Network | 184 |
| abstract_inverted_index.actions | 65 |
| abstract_inverted_index.advance | 302 |
| abstract_inverted_index.control | 79 |
| abstract_inverted_index.decodes | 122 |
| abstract_inverted_index.develop | 226 |
| abstract_inverted_index.emerged | 4, 162 |
| abstract_inverted_index.extract | 166 |
| abstract_inverted_index.feature | 154 |
| abstract_inverted_index.further | 27 |
| abstract_inverted_index.fusion, | 116, 304 |
| abstract_inverted_index.fusion. | 178 |
| abstract_inverted_index.gesture | 87 |
| abstract_inverted_index.inputs. | 239 |
| abstract_inverted_index.level), | 256 |
| abstract_inverted_index.machine | 45, 147, 158, 298 |
| abstract_inverted_index.method, | 39 |
| abstract_inverted_index.methods | 100, 149, 160, 300 |
| abstract_inverted_index.models. | 107, 265 |
| abstract_inverted_index.patient | 22 |
| abstract_inverted_index.results | 241 |
| abstract_inverted_index.robotic | 1, 30, 316 |
| abstract_inverted_index.signal) | 236 |
| abstract_inverted_index.signals | 72, 94, 129, 212, 217 |
| abstract_inverted_index.through | 42 |
| abstract_inverted_index.Wearable | 0 |
| abstract_inverted_index.accuracy | 104, 245 |
| abstract_inverted_index.adopted. | 37 |
| abstract_inverted_index.classify | 62 |
| abstract_inverted_index.combined | 190, 292 |
| abstract_inverted_index.control, | 25 |
| abstract_inverted_index.creating | 117 |
| abstract_inverted_index.dataset, | 171 |
| abstract_inverted_index.decoding | 91 |
| abstract_inverted_index.exciting | 7 |
| abstract_inverted_index.extracts | 207 |
| abstract_inverted_index.however, | 15, 156 |
| abstract_inverted_index.increase | 132 |
| abstract_inverted_index.learning | 46, 148, 159, 299 |
| abstract_inverted_index.possible | 41 |
| abstract_inverted_index.recorded | 219 |
| abstract_inverted_index.relevant | 78, 167, 208 |
| abstract_inverted_index.requires | 26 |
| abstract_inverted_index.signals, | 53 |
| abstract_inverted_index.wearable | 315 |
| abstract_inverted_index.(filtered | 235 |
| abstract_inverted_index.EEG–EMG | 115, 140, 177, 191, 203, 278, 293, 303 |
| abstract_inverted_index.affecting | 13 |
| abstract_inverted_index.available | 136 |
| abstract_inverted_index.detection | 85 |
| abstract_inverted_index.determine | 194, 286 |
| abstract_inverted_index.developed | 188 |
| abstract_inverted_index.different | 282 |
| abstract_inverted_index.disorders | 12 |
| abstract_inverted_index.evaluates | 281 |
| abstract_inverted_index.improving | 102 |
| abstract_inverted_index.intention | 84 |
| abstract_inverted_index.leverages | 296 |
| abstract_inverted_index.mobility; | 14 |
| abstract_inverted_index.potential | 198 |
| abstract_inverted_index.treatment | 9 |
| abstract_inverted_index.usability | 313 |
| abstract_inverted_index.viability | 270 |
| abstract_inverted_index.assistance | 31 |
| abstract_inverted_index.beneficial | 175 |
| abstract_inverted_index.challenges | 89 |
| abstract_inverted_index.interface, | 18 |
| abstract_inverted_index.ultimately | 307 |
| abstract_inverted_index.extraction; | 155 |
| abstract_inverted_index.implemented | 144 |
| abstract_inverted_index.improvement | 28 |
| abstract_inverted_index.information | 123, 168, 209 |
| abstract_inverted_index.intentions. | 67 |
| abstract_inverted_index.researchers | 97 |
| abstract_inverted_index.technology, | 47 |
| abstract_inverted_index.three-class | 252 |
| abstract_inverted_index.traditional | 146 |
| abstract_inverted_index.advancements | 43 |
| abstract_inverted_index.demonstrated | 75 |
| abstract_inverted_index.demonstrates | 268 |
| abstract_inverted_index.domain-based | 264 |
| abstract_inverted_index.exoskeletons | 2 |
| abstract_inverted_index.improvements | 310 |
| abstract_inverted_index.information. | 137 |
| abstract_inverted_index.recognition, | 88 |
| abstract_inverted_index.(spectrogram) | 232 |
| abstract_inverted_index.Convolutional | 182 |
| abstract_inverted_index.automatically | 165, 206 |
| abstract_inverted_index.bioelectrical | 52, 93 |
| abstract_inverted_index.exoskeletons. | 317 |
| abstract_inverted_index.classification | 69, 119 |
| abstract_inverted_index.implementation | 289 |
| abstract_inverted_index.rehabilitation | 33 |
| abstract_inverted_index.simultaneously | 130 |
| abstract_inverted_index.human–machine | 17 |
| abstract_inverted_index.representations | 284 |
| abstract_inverted_index.simultaneously. | 213 |
| abstract_inverted_index.electromyography | 59 |
| abstract_inverted_index.time–frequency | 231, 263 |
| abstract_inverted_index.flexion–extension | 222 |
| abstract_inverted_index.electroencephalography | 56 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5003665590 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I125749732 |
| citation_normalized_percentile.value | 0.79878909 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |