Evaluating Deep Learning Techniques for Sugarcane Disease Classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.61467/2007.1558.2025.v16i3.851
Recent studies have explored the use of deep learning algorithms for the early detection of diseases. This work presents a comparative analysis of three state-of-the-art deep learning model architectures applied to this task. A study was conducted to test and compare these models using a dataset of 7,000 sugarcane leaf images categorized into five classes (healthy leaves and four disease types) and evaluated the performance of these models across various classification metrics to determine the most effective approach. Sugarcane is one of Mexico’s principal crops (INEGI, 2025), playing a crucial role in the sugar industry and its derivatives. However, various diseases pose a threat to sugarcane cultivation, resulting in significant economic losses due to the large-scale eradication of crops. Early and accurate identification of diseases is essential for effective management, yet it remains challenging without specialised knowledge. Deep learning tools can facilitate the detection of such diseases. This study presents a comparative analysis of three state-of-the-art deep learning architectures—EfficientNetV2B0, DenseNet121, and ResNet101V2—for sugarcane disease detection. Using a dataset of 7,000 sugarcane leaf images categorised into five classes (healthy and four disease types), the evaluation of these models was based on multiple classification metrics. The findings highlight competitive performance among the models, showcasing their respective strengths and limitations in terms of accuracy and computational efficiency. This analysis offers valuable insights into deep learning-based approaches for sugarcane disease detection, supporting the development of practical solutions for the agricultural sector.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.61467/2007.1558.2025.v16i3.851
- https://ijcopi.org/ojs/article/download/851/422
- OA Status
- diamond
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412379401
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412379401Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.61467/2007.1558.2025.v16i3.851Digital Object Identifier
- Title
-
Evaluating Deep Learning Techniques for Sugarcane Disease ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-14Full publication date if available
- Authors
-
Melesio Crespo-SanchezList of authors in order
- Landing page
-
https://doi.org/10.61467/2007.1558.2025.v16i3.851Publisher landing page
- PDF URL
-
https://ijcopi.org/ojs/article/download/851/422Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ijcopi.org/ojs/article/download/851/422Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Computer science, Machine learning, Biotechnology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412379401 |
|---|---|
| doi | https://doi.org/10.61467/2007.1558.2025.v16i3.851 |
| ids.doi | https://doi.org/10.61467/2007.1558.2025.v16i3.851 |
| ids.openalex | https://openalex.org/W4412379401 |
| fwci | 0.0 |
| type | article |
| title | Evaluating Deep Learning Techniques for Sugarcane Disease Classification |
| biblio.issue | 3 |
| biblio.volume | 16 |
| biblio.last_page | 488 |
| biblio.first_page | 478 |
| topics[0].id | https://openalex.org/T12431 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Sugarcane Cultivation and Processing |
| topics[1].id | https://openalex.org/T10616 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9254000186920166 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Smart Agriculture and AI |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9027000069618225 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5161665081977844 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.507110595703125 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3885256052017212 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.386652410030365 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C150903083 |
| concepts[4].level | 1 |
| concepts[4].score | 0.35554149746894836 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7108 |
| concepts[4].display_name | Biotechnology |
| concepts[5].id | https://openalex.org/C86803240 |
| concepts[5].level | 0 |
| concepts[5].score | 0.35023605823516846 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[5].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.5161665081977844 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.507110595703125 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3885256052017212 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.386652410030365 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/biotechnology |
| keywords[4].score | 0.35554149746894836 |
| keywords[4].display_name | Biotechnology |
| keywords[5].id | https://openalex.org/keywords/biology |
| keywords[5].score | 0.35023605823516846 |
| keywords[5].display_name | Biology |
| language | en |
| locations[0].id | doi:10.61467/2007.1558.2025.v16i3.851 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4404675559 |
| locations[0].source.issn | 2007-1558 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2007-1558 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://ijcopi.org/ojs/article/download/851/422 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| locations[0].landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.851 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5026936454 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5688-5352 |
| authorships[0].author.display_name | Melesio Crespo-Sanchez |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I196664497 |
| authorships[0].affiliations[0].raw_affiliation_string | Universidad Autónoma de San Luis Potosí |
| authorships[0].institutions[0].id | https://openalex.org/I196664497 |
| authorships[0].institutions[0].ror | https://ror.org/000917t60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I196664497 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Autonomous University of San Luis Potosí |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Melesio Crespo-Sanchez |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Universidad Autónoma de San Luis Potosí |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ijcopi.org/ojs/article/download/851/422 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating Deep Learning Techniques for Sugarcane Disease Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12431 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Sugarcane Cultivation and Processing |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3082895349 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.61467/2007.1558.2025.v16i3.851 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4404675559 |
| best_oa_location.source.issn | 2007-1558 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2007-1558 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://ijcopi.org/ojs/article/download/851/422 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.851 |
| primary_location.id | doi:10.61467/2007.1558.2025.v16i3.851 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4404675559 |
| primary_location.source.issn | 2007-1558 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2007-1558 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Combinatorial Optimization Problems and Informatics. |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://ijcopi.org/ojs/article/download/851/422 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Combinatorial Optimization Problems and Informatics |
| primary_location.landing_page_url | https://doi.org/10.61467/2007.1558.2025.v16i3.851 |
| publication_date | 2025-07-14 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2050500094, https://openalex.org/W3011541640, https://openalex.org/W4297878068, https://openalex.org/W4205910866, https://openalex.org/W3022585740, https://openalex.org/W3195963910, https://openalex.org/W6793164127, https://openalex.org/W6725739302, https://openalex.org/W6698183232, https://openalex.org/W6676297131, https://openalex.org/W6925410057, https://openalex.org/W6930669232 |
| referenced_works_count | 12 |
| abstract_inverted_index.A | 33 |
| abstract_inverted_index.a | 19, 44, 88, 102, 150, 166 |
| abstract_inverted_index.in | 91, 108, 207 |
| abstract_inverted_index.is | 79, 125 |
| abstract_inverted_index.it | 131 |
| abstract_inverted_index.of | 6, 14, 22, 46, 65, 81, 117, 123, 144, 153, 168, 184, 209, 230 |
| abstract_inverted_index.on | 189 |
| abstract_inverted_index.to | 30, 37, 72, 104, 113 |
| abstract_inverted_index.The | 193 |
| abstract_inverted_index.and | 39, 57, 61, 95, 120, 160, 178, 205, 211 |
| abstract_inverted_index.can | 140 |
| abstract_inverted_index.due | 112 |
| abstract_inverted_index.for | 10, 127, 223, 233 |
| abstract_inverted_index.its | 96 |
| abstract_inverted_index.one | 80 |
| abstract_inverted_index.the | 4, 11, 63, 74, 92, 114, 142, 182, 199, 228, 234 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.was | 35, 187 |
| abstract_inverted_index.yet | 130 |
| abstract_inverted_index.Deep | 137 |
| abstract_inverted_index.This | 16, 147, 214 |
| abstract_inverted_index.deep | 7, 25, 156, 220 |
| abstract_inverted_index.five | 53, 175 |
| abstract_inverted_index.four | 58, 179 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 52, 174, 219 |
| abstract_inverted_index.leaf | 49, 171 |
| abstract_inverted_index.most | 75 |
| abstract_inverted_index.pose | 101 |
| abstract_inverted_index.role | 90 |
| abstract_inverted_index.such | 145 |
| abstract_inverted_index.test | 38 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.work | 17 |
| abstract_inverted_index.7,000 | 47, 169 |
| abstract_inverted_index.Early | 119 |
| abstract_inverted_index.Using | 165 |
| abstract_inverted_index.among | 198 |
| abstract_inverted_index.based | 188 |
| abstract_inverted_index.crops | 84 |
| abstract_inverted_index.early | 12 |
| abstract_inverted_index.model | 27 |
| abstract_inverted_index.study | 34, 148 |
| abstract_inverted_index.sugar | 93 |
| abstract_inverted_index.task. | 32 |
| abstract_inverted_index.terms | 208 |
| abstract_inverted_index.their | 202 |
| abstract_inverted_index.these | 41, 66, 185 |
| abstract_inverted_index.three | 23, 154 |
| abstract_inverted_index.tools | 139 |
| abstract_inverted_index.using | 43 |
| abstract_inverted_index.2025), | 86 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.across | 68 |
| abstract_inverted_index.crops. | 118 |
| abstract_inverted_index.images | 50, 172 |
| abstract_inverted_index.leaves | 56 |
| abstract_inverted_index.losses | 111 |
| abstract_inverted_index.models | 42, 67, 186 |
| abstract_inverted_index.offers | 216 |
| abstract_inverted_index.threat | 103 |
| abstract_inverted_index.types) | 60 |
| abstract_inverted_index.(INEGI, | 85 |
| abstract_inverted_index.applied | 29 |
| abstract_inverted_index.classes | 54, 176 |
| abstract_inverted_index.compare | 40 |
| abstract_inverted_index.crucial | 89 |
| abstract_inverted_index.dataset | 45, 167 |
| abstract_inverted_index.disease | 59, 163, 180, 225 |
| abstract_inverted_index.metrics | 71 |
| abstract_inverted_index.models, | 200 |
| abstract_inverted_index.playing | 87 |
| abstract_inverted_index.remains | 132 |
| abstract_inverted_index.sector. | 236 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.types), | 181 |
| abstract_inverted_index.various | 69, 99 |
| abstract_inverted_index.without | 134 |
| abstract_inverted_index.(healthy | 55, 177 |
| abstract_inverted_index.However, | 98 |
| abstract_inverted_index.accuracy | 210 |
| abstract_inverted_index.accurate | 121 |
| abstract_inverted_index.analysis | 21, 152, 215 |
| abstract_inverted_index.diseases | 100, 124 |
| abstract_inverted_index.economic | 110 |
| abstract_inverted_index.explored | 3 |
| abstract_inverted_index.findings | 194 |
| abstract_inverted_index.industry | 94 |
| abstract_inverted_index.insights | 218 |
| abstract_inverted_index.learning | 8, 26, 138, 157 |
| abstract_inverted_index.metrics. | 192 |
| abstract_inverted_index.multiple | 190 |
| abstract_inverted_index.presents | 18, 149 |
| abstract_inverted_index.valuable | 217 |
| abstract_inverted_index.Sugarcane | 78 |
| abstract_inverted_index.approach. | 77 |
| abstract_inverted_index.conducted | 36 |
| abstract_inverted_index.detection | 13, 143 |
| abstract_inverted_index.determine | 73 |
| abstract_inverted_index.diseases. | 15, 146 |
| abstract_inverted_index.effective | 76, 128 |
| abstract_inverted_index.essential | 126 |
| abstract_inverted_index.evaluated | 62 |
| abstract_inverted_index.highlight | 195 |
| abstract_inverted_index.practical | 231 |
| abstract_inverted_index.principal | 83 |
| abstract_inverted_index.resulting | 107 |
| abstract_inverted_index.solutions | 232 |
| abstract_inverted_index.strengths | 204 |
| abstract_inverted_index.sugarcane | 48, 105, 162, 170, 224 |
| abstract_inverted_index.Mexico’s | 82 |
| abstract_inverted_index.algorithms | 9 |
| abstract_inverted_index.approaches | 222 |
| abstract_inverted_index.detection, | 226 |
| abstract_inverted_index.detection. | 164 |
| abstract_inverted_index.evaluation | 183 |
| abstract_inverted_index.facilitate | 141 |
| abstract_inverted_index.knowledge. | 136 |
| abstract_inverted_index.respective | 203 |
| abstract_inverted_index.showcasing | 201 |
| abstract_inverted_index.supporting | 227 |
| abstract_inverted_index.categorised | 173 |
| abstract_inverted_index.categorized | 51 |
| abstract_inverted_index.challenging | 133 |
| abstract_inverted_index.comparative | 20, 151 |
| abstract_inverted_index.competitive | 196 |
| abstract_inverted_index.development | 229 |
| abstract_inverted_index.efficiency. | 213 |
| abstract_inverted_index.eradication | 116 |
| abstract_inverted_index.large-scale | 115 |
| abstract_inverted_index.limitations | 206 |
| abstract_inverted_index.management, | 129 |
| abstract_inverted_index.performance | 64, 197 |
| abstract_inverted_index.significant | 109 |
| abstract_inverted_index.specialised | 135 |
| abstract_inverted_index.DenseNet121, | 159 |
| abstract_inverted_index.agricultural | 235 |
| abstract_inverted_index.cultivation, | 106 |
| abstract_inverted_index.derivatives. | 97 |
| abstract_inverted_index.architectures | 28 |
| abstract_inverted_index.computational | 212 |
| abstract_inverted_index.classification | 70, 191 |
| abstract_inverted_index.identification | 122 |
| abstract_inverted_index.learning-based | 221 |
| abstract_inverted_index.state-of-the-art | 24, 155 |
| abstract_inverted_index.ResNet101V2—for | 161 |
| abstract_inverted_index.architectures—EfficientNetV2B0, | 158 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5026936454 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I196664497 |
| citation_normalized_percentile.value | 0.19807757 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |