Evaluating Explainable AI Methods in Deep Learning Models for Early Detection of Cerebral Palsy Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3525571
Early detection of Cerebral Palsy (CP) is crucial for effective intervention and monitoring. This paper tests the reliability and applicability of Explainable AI (XAI) methods using a deep learning method that predicts CP by analyzing skeletal data extracted from video recordings of infant movements. Specifically, we use XAI evaluation metrics — namely faithfulness and stability — to quantitatively assess the reliability of Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM) in this specific medical application. We utilize a unique dataset of infant movements and apply skeleton data perturbations without distorting the original dynamics of the infant movements. Our CP prediction model utilizes an ensemble approach, so we evaluate the XAI metrics performances for both the overall ensemble and the individual models. Our findings indicate that both XAI methods effectively identify key body points influencing CP predictions and that the explanations are robust against minor data perturbations. Grad-CAM significantly outperforms CAM in the Relative Input Stability velocity (RISv) metric, which measures stability in terms of velocity. In contrast, CAM performs better in the Relative Input Stability bone (RISb) metric, which relates to bone stability, and the Relative Representation Stability (RRS) metric, which assesses internal representation robustness. Individual models within the ensemble show varied results, and neither CAM nor Grad-CAM consistently outperform the other, with the ensemble approach providing a representation of outcomes from its constituent models. Both CAM and Grad-CAM also perform significantly better than random attribution, supporting the robustness of these XAI methods. Our work demonstrates that XAI methods can offer reliable and stable explanations for CP prediction models. Future studies should further investigate how the explanations can enhance our understanding of specific movement patterns characterizing healthy and pathological development.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3525571
- OA Status
- gold
- Cited By
- 4
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406012401
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406012401Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3525571Digital Object Identifier
- Title
-
Evaluating Explainable AI Methods in Deep Learning Models for Early Detection of Cerebral PalsyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Kimji N. Pellano, Inga Strümke, Daniel Groos, Lars Adde, Espen A. F. IhlenList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3525571Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3525571Direct OA link when available
- Concepts
-
Computer science, Cerebral palsy, Artificial intelligence, Deep learning, Machine learning, Physical medicine and rehabilitation, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406012401 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3525571 |
| ids.doi | https://doi.org/10.1109/access.2025.3525571 |
| ids.openalex | https://openalex.org/W4406012401 |
| fwci | 7.97144723 |
| type | article |
| title | Evaluating Explainable AI Methods in Deep Learning Models for Early Detection of Cerebral Palsy |
| awards[0].id | https://openalex.org/G2767679607 |
| awards[0].funder_id | https://openalex.org/F4320323299 |
| awards[0].display_name | |
| awards[0].funder_award_id | 327146 |
| awards[0].funder_display_name | Norges Forskningsråd |
| awards[1].id | https://openalex.org/G6938132904 |
| awards[1].funder_id | https://openalex.org/F4320332999 |
| awards[1].display_name | |
| awards[1].funder_award_id | 101034240 |
| awards[1].funder_display_name | Horizon 2020 Framework Programme |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 10138 |
| biblio.first_page | 10126 |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8762000203132629 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T10510 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8758999705314636 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2742 |
| topics[1].subfield.display_name | Rehabilitation |
| topics[1].display_name | Stroke Rehabilitation and Recovery |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.8403000235557556 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| funders[0].id | https://openalex.org/F4320323299 |
| funders[0].ror | https://ror.org/00epmv149 |
| funders[0].display_name | Norges Forskningsråd |
| funders[1].id | https://openalex.org/F4320332999 |
| funders[1].ror | https://ror.org/00k4n6c32 |
| funders[1].display_name | Horizon 2020 Framework Programme |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6930795311927795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779421357 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6840884685516357 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q210427 |
| concepts[1].display_name | Cerebral palsy |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5987547039985657 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C108583219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5655640363693237 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[3].display_name | Deep learning |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47398415207862854 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C99508421 |
| concepts[5].level | 1 |
| concepts[5].score | 0.23056021332740784 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[5].display_name | Physical medicine and rehabilitation |
| concepts[6].id | https://openalex.org/C71924100 |
| concepts[6].level | 0 |
| concepts[6].score | 0.13881736993789673 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[6].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6930795311927795 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cerebral-palsy |
| keywords[1].score | 0.6840884685516357 |
| keywords[1].display_name | Cerebral palsy |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5987547039985657 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/deep-learning |
| keywords[3].score | 0.5655640363693237 |
| keywords[3].display_name | Deep learning |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.47398415207862854 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[5].score | 0.23056021332740784 |
| keywords[5].display_name | Physical medicine and rehabilitation |
| keywords[6].id | https://openalex.org/keywords/medicine |
| keywords[6].score | 0.13881736993789673 |
| keywords[6].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3525571 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3525571 |
| locations[1].id | pmh:oai:doaj.org/article:62279fe9ca6b47999e7d673106206f3a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 10126-10138 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/62279fe9ca6b47999e7d673106206f3a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5093976029 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5423-9418 |
| authorships[0].author.display_name | Kimji N. Pellano |
| authorships[0].countries | NO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[0].institutions[0].id | https://openalex.org/I204778367 |
| authorships[0].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[0].institutions[0].country_code | NO |
| authorships[0].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kimji N. Pellano |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[1].author.id | https://openalex.org/A5000311801 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1820-6544 |
| authorships[1].author.display_name | Inga Strümke |
| authorships[1].countries | NO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[1].institutions[0].id | https://openalex.org/I204778367 |
| authorships[1].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[1].institutions[0].country_code | NO |
| authorships[1].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Inga Strümke |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[2].author.id | https://openalex.org/A5010644299 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0676-2324 |
| authorships[2].author.display_name | Daniel Groos |
| authorships[2].countries | NO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[2].institutions[0].id | https://openalex.org/I204778367 |
| authorships[2].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[2].institutions[0].country_code | NO |
| authorships[2].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Daniel Groos |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[3].author.id | https://openalex.org/A5033077256 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5532-0034 |
| authorships[3].author.display_name | Lars Adde |
| authorships[3].countries | NO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[3].institutions[0].id | https://openalex.org/I204778367 |
| authorships[3].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[3].institutions[0].country_code | NO |
| authorships[3].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lars Adde |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[4].author.id | https://openalex.org/A5077369441 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2469-1809 |
| authorships[4].author.display_name | Espen A. F. Ihlen |
| authorships[4].countries | NO |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204778367 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| authorships[4].institutions[0].id | https://openalex.org/I204778367 |
| authorships[4].institutions[0].ror | https://ror.org/05xg72x27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204778367 |
| authorships[4].institutions[0].country_code | NO |
| authorships[4].institutions[0].display_name | Norwegian University of Science and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Espen Alexander F. Ihlen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3525571 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating Explainable AI Methods in Deep Learning Models for Early Detection of Cerebral Palsy |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8762000203132629 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W2961085424, https://openalex.org/W3215138031, https://openalex.org/W4306674287, https://openalex.org/W3009238340, https://openalex.org/W4360585206, https://openalex.org/W4321369474, https://openalex.org/W4285208911, https://openalex.org/W4387369504, https://openalex.org/W3046775127 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3525571 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3525571 |
| primary_location.id | doi:10.1109/access.2025.3525571 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3525571 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2736255997, https://openalex.org/W4401261780, https://openalex.org/W3011419123, https://openalex.org/W4285037000, https://openalex.org/W4294675161, https://openalex.org/W4224930280, https://openalex.org/W4389740321, https://openalex.org/W2985393265, https://openalex.org/W2004451936, https://openalex.org/W3201817639, https://openalex.org/W4406343076, https://openalex.org/W2545698454, https://openalex.org/W2796593831, https://openalex.org/W3023750556, https://openalex.org/W2770369508, https://openalex.org/W3128900188, https://openalex.org/W3161558656, https://openalex.org/W4399771803, https://openalex.org/W3187181762, https://openalex.org/W3159935823, https://openalex.org/W4392912728, https://openalex.org/W2295107390, https://openalex.org/W3185273257, https://openalex.org/W4225269923, https://openalex.org/W2962858109, https://openalex.org/W6752771859, https://openalex.org/W3133543405, https://openalex.org/W3046238651, https://openalex.org/W6752948792, https://openalex.org/W6809941272, https://openalex.org/W6839153583, https://openalex.org/W2000943144, https://openalex.org/W3162547991, https://openalex.org/W2053082262, https://openalex.org/W2116510698, https://openalex.org/W1523809896, https://openalex.org/W2087042779, https://openalex.org/W3174222500 |
| referenced_works_count | 38 |
| abstract_inverted_index.a | 26, 79, 219 |
| abstract_inverted_index.AI | 22 |
| abstract_inverted_index.CP | 32, 100, 136, 258 |
| abstract_inverted_index.In | 167 |
| abstract_inverted_index.We | 77 |
| abstract_inverted_index.an | 104 |
| abstract_inverted_index.by | 33 |
| abstract_inverted_index.in | 72, 152, 163, 172 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 2, 20, 41, 61, 82, 95, 165, 221, 241, 273 |
| abstract_inverted_index.so | 107 |
| abstract_inverted_index.to | 56, 182 |
| abstract_inverted_index.we | 45, 108 |
| abstract_inverted_index.CAM | 151, 169, 207, 228 |
| abstract_inverted_index.Our | 99, 123, 245 |
| abstract_inverted_index.XAI | 47, 111, 128, 243, 249 |
| abstract_inverted_index.and | 11, 18, 53, 66, 85, 119, 138, 185, 205, 229, 254, 279 |
| abstract_inverted_index.are | 142 |
| abstract_inverted_index.can | 251, 269 |
| abstract_inverted_index.for | 8, 114, 257 |
| abstract_inverted_index.how | 266 |
| abstract_inverted_index.its | 224 |
| abstract_inverted_index.key | 132 |
| abstract_inverted_index.nor | 208 |
| abstract_inverted_index.our | 271 |
| abstract_inverted_index.the | 16, 59, 92, 96, 110, 116, 120, 140, 153, 173, 186, 200, 212, 215, 239, 267 |
| abstract_inverted_index.use | 46 |
| abstract_inverted_index.(CP) | 5 |
| abstract_inverted_index.Both | 227 |
| abstract_inverted_index.This | 13 |
| abstract_inverted_index.also | 231 |
| abstract_inverted_index.body | 133 |
| abstract_inverted_index.bone | 177, 183 |
| abstract_inverted_index.both | 115, 127 |
| abstract_inverted_index.data | 36, 88, 146 |
| abstract_inverted_index.deep | 27 |
| abstract_inverted_index.from | 38, 223 |
| abstract_inverted_index.show | 202 |
| abstract_inverted_index.than | 235 |
| abstract_inverted_index.that | 30, 126, 139, 248 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.with | 214 |
| abstract_inverted_index.work | 246 |
| abstract_inverted_index.(CAM) | 65 |
| abstract_inverted_index.(RRS) | 190 |
| abstract_inverted_index.(XAI) | 23 |
| abstract_inverted_index.Class | 62, 68 |
| abstract_inverted_index.Early | 0 |
| abstract_inverted_index.Input | 155, 175 |
| abstract_inverted_index.Palsy | 4 |
| abstract_inverted_index.apply | 86 |
| abstract_inverted_index.minor | 145 |
| abstract_inverted_index.model | 102 |
| abstract_inverted_index.offer | 252 |
| abstract_inverted_index.paper | 14 |
| abstract_inverted_index.terms | 164 |
| abstract_inverted_index.tests | 15 |
| abstract_inverted_index.these | 242 |
| abstract_inverted_index.using | 25 |
| abstract_inverted_index.video | 39 |
| abstract_inverted_index.which | 160, 180, 192 |
| abstract_inverted_index.(RISb) | 178 |
| abstract_inverted_index.(RISv) | 158 |
| abstract_inverted_index.Future | 261 |
| abstract_inverted_index.assess | 58 |
| abstract_inverted_index.better | 171, 234 |
| abstract_inverted_index.infant | 42, 83, 97 |
| abstract_inverted_index.method | 29 |
| abstract_inverted_index.models | 198 |
| abstract_inverted_index.namely | 51 |
| abstract_inverted_index.other, | 213 |
| abstract_inverted_index.points | 134 |
| abstract_inverted_index.random | 236 |
| abstract_inverted_index.robust | 143 |
| abstract_inverted_index.should | 263 |
| abstract_inverted_index.stable | 255 |
| abstract_inverted_index.unique | 80 |
| abstract_inverted_index.varied | 203 |
| abstract_inverted_index.within | 199 |
| abstract_inverted_index.Mapping | 64, 70 |
| abstract_inverted_index.against | 144 |
| abstract_inverted_index.crucial | 7 |
| abstract_inverted_index.dataset | 81 |
| abstract_inverted_index.enhance | 270 |
| abstract_inverted_index.further | 264 |
| abstract_inverted_index.healthy | 278 |
| abstract_inverted_index.medical | 75 |
| abstract_inverted_index.methods | 24, 129, 250 |
| abstract_inverted_index.metric, | 159, 179, 191 |
| abstract_inverted_index.metrics | 49, 112 |
| abstract_inverted_index.models. | 122, 226, 260 |
| abstract_inverted_index.neither | 206 |
| abstract_inverted_index.overall | 117 |
| abstract_inverted_index.perform | 232 |
| abstract_inverted_index.relates | 181 |
| abstract_inverted_index.studies | 262 |
| abstract_inverted_index.utilize | 78 |
| abstract_inverted_index.without | 90 |
| abstract_inverted_index.— | 50, 55 |
| abstract_inverted_index.Cerebral | 3 |
| abstract_inverted_index.Grad-CAM | 148, 209, 230 |
| abstract_inverted_index.Relative | 154, 174, 187 |
| abstract_inverted_index.approach | 217 |
| abstract_inverted_index.assesses | 193 |
| abstract_inverted_index.dynamics | 94 |
| abstract_inverted_index.ensemble | 105, 118, 201, 216 |
| abstract_inverted_index.evaluate | 109 |
| abstract_inverted_index.findings | 124 |
| abstract_inverted_index.identify | 131 |
| abstract_inverted_index.indicate | 125 |
| abstract_inverted_index.internal | 194 |
| abstract_inverted_index.learning | 28 |
| abstract_inverted_index.measures | 161 |
| abstract_inverted_index.methods. | 244 |
| abstract_inverted_index.movement | 275 |
| abstract_inverted_index.original | 93 |
| abstract_inverted_index.outcomes | 222 |
| abstract_inverted_index.patterns | 276 |
| abstract_inverted_index.performs | 170 |
| abstract_inverted_index.predicts | 31 |
| abstract_inverted_index.reliable | 253 |
| abstract_inverted_index.results, | 204 |
| abstract_inverted_index.skeletal | 35 |
| abstract_inverted_index.skeleton | 87 |
| abstract_inverted_index.specific | 74, 274 |
| abstract_inverted_index.utilizes | 103 |
| abstract_inverted_index.velocity | 157 |
| abstract_inverted_index.Stability | 156, 176, 189 |
| abstract_inverted_index.analyzing | 34 |
| abstract_inverted_index.approach, | 106 |
| abstract_inverted_index.contrast, | 168 |
| abstract_inverted_index.detection | 1 |
| abstract_inverted_index.effective | 9 |
| abstract_inverted_index.extracted | 37 |
| abstract_inverted_index.movements | 84 |
| abstract_inverted_index.providing | 218 |
| abstract_inverted_index.stability | 54, 162 |
| abstract_inverted_index.velocity. | 166 |
| abstract_inverted_index.(Grad-CAM) | 71 |
| abstract_inverted_index.Activation | 63, 69 |
| abstract_inverted_index.Individual | 197 |
| abstract_inverted_index.distorting | 91 |
| abstract_inverted_index.evaluation | 48 |
| abstract_inverted_index.individual | 121 |
| abstract_inverted_index.movements. | 43, 98 |
| abstract_inverted_index.outperform | 211 |
| abstract_inverted_index.prediction | 101, 259 |
| abstract_inverted_index.recordings | 40 |
| abstract_inverted_index.robustness | 240 |
| abstract_inverted_index.stability, | 184 |
| abstract_inverted_index.supporting | 238 |
| abstract_inverted_index.Explainable | 21 |
| abstract_inverted_index.constituent | 225 |
| abstract_inverted_index.effectively | 130 |
| abstract_inverted_index.influencing | 135 |
| abstract_inverted_index.investigate | 265 |
| abstract_inverted_index.monitoring. | 12 |
| abstract_inverted_index.outperforms | 150 |
| abstract_inverted_index.predictions | 137 |
| abstract_inverted_index.reliability | 17, 60 |
| abstract_inverted_index.robustness. | 196 |
| abstract_inverted_index.application. | 76 |
| abstract_inverted_index.attribution, | 237 |
| abstract_inverted_index.consistently | 210 |
| abstract_inverted_index.demonstrates | 247 |
| abstract_inverted_index.development. | 281 |
| abstract_inverted_index.explanations | 141, 256, 268 |
| abstract_inverted_index.faithfulness | 52 |
| abstract_inverted_index.intervention | 10 |
| abstract_inverted_index.pathological | 280 |
| abstract_inverted_index.performances | 113 |
| abstract_inverted_index.Specifically, | 44 |
| abstract_inverted_index.applicability | 19 |
| abstract_inverted_index.perturbations | 89 |
| abstract_inverted_index.significantly | 149, 233 |
| abstract_inverted_index.understanding | 272 |
| abstract_inverted_index.Representation | 188 |
| abstract_inverted_index.characterizing | 277 |
| abstract_inverted_index.perturbations. | 147 |
| abstract_inverted_index.quantitatively | 57 |
| abstract_inverted_index.representation | 195, 220 |
| abstract_inverted_index.Gradient-weighted | 67 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.92304531 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |