Evaluating Fluid Distribution by Distributed Acoustic Sensing (DAS) with Perforation Erosion Effect Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/s25227037
· OA: W4416390609
Among the various completion strategies used in multi-stage hydraulic fracturing of horizontal wells, the limited entry design has become one of the most common approaches to promote more uniform slurry distribution. This method involves reducing the number of perforations so that higher perforation friction is generated at each entry point. The increased pressure drops force fluid and proppant to be diverted across multiple clusters rather than concentrating at only a few, thereby enhancing stimulation efficiency along the lateral. In this study, Computational Fluid Dynamics (CFD) simulations were performed to investigate how perforation erosion influences acoustic signals measured by Distributed Acoustic Sensing (DAS). Unlike previous studies that assumed perfectly circular perforations, this work uses oval-shaped geometries to better reflect the irregular erosion observed in the field, which provides more realistic modeling. The workflow involved building wellbore and perforation geometries, generating computational meshes, and solving transient turbulent flow using Large Eddy Simulation (LES) coupled with the Ffowcs Williams–Hawkings (FW-H) acoustic model. Acoustic pressure was then estimated at receiver points and converted into sound pressure level for analysis. The results show that, for a given perforation size, changes in flow rate cause log(q) versus sound pressure level to follow a straight line defined by a constant slope and varying intercept. Even when erosion alters the perforation into an oval shape, the intercept increases logarithmically, resulting in reduced sound amplitude, while the slope remains unchanged. Furthermore, when the cross-sectional area and flow rate are equal, oval perforations produce higher sound amplitudes than circular ones, suggesting that perforation geometry has a measurable influence on the DAS signal. This indicates that even when the same amplitude DAS signal is obtained, assuming circular perforations when estimating the fluid distribution leads to an overestimation if the actual perforation shape is oval. These findings highlight the importance of considering irregular erosion patterns when linking DAS responses to fluid distribution during hydraulic fracturing.