Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitat Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3389/frsen.2023.1196554
Continuous characterizations of forest structure are critical for modeling wildlife habitat as well as for assessing trade-offs with additional ecosystem services. To overcome the spatial and temporal limitations of airborne lidar data for studying wide-ranging animals and for monitoring wildlife habitat through time, novel sampling data sources, including the space-borne Global Ecosystem Dynamics Investigation (GEDI) lidar instrument, may be incorporated within data fusion frameworks to scale up satellite-based estimates of forest structure across continuous spatial extents. The objectives of this study were to: 1) investigate the value and limitations of satellite data sources for generating GEDI-fusion models and 30 m resolution predictive maps of eight forest structure measures across six western U.S. states (Colorado, Wyoming, Idaho, Oregon, Washington, and Montana); 2) evaluate the suitability of GEDI as a reference data source and assess any spatiotemporal biases of GEDI-fusion maps using samples of airborne lidar data; and 3) examine differences in GEDI-fusion products for inclusion within wildlife habitat models for three keystone woodpecker species with varying forest structure needs. We focused on two fusion models, one that combined Landsat, Sentinel-1 Synthetic Aperture Radar, disturbance, topographic, and bioclimatic predictor information (combined model), and one that was restricted to Landsat, topographic, and bioclimatic predictors (Landsat/topo/bio model). Model performance varied across the eight GEDI structure measures although all representing moderate to high predictive performance (model testing R 2 values ranging from 0.36 to 0.76). Results were similar between fusion models, as well as for map validations for years of model creation (2019–2020) and hindcasted years (2016–2018). Within our wildlife case studies, modeling encounter rates of the three woodpecker species using GEDI-fusion inputs yielded AUC values ranging from 0.76–0.87 with observed relationships that followed our ecological understanding of the species. While our results show promise for the use of remote sensing data fusions for scaling up GEDI structure metrics of value for habitat modeling and other applications across broad continuous extents, further assessments are needed to test their performance within habitat modeling for additional species of conservation interest as well as biodiversity assessments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/frsen.2023.1196554
- OA Status
- gold
- Cited By
- 18
- References
- 85
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4381431914
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4381431914Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/frsen.2023.1196554Digital Object Identifier
- Title
-
Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitatWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-06-20Full publication date if available
- Authors
-
Jody C. Vogeler, Patrick A. Fekety, Lisa H. Elliott, Neal C. Swayze, Steven K. Filippelli, Brent Barry, Joseph D. Holbrook, Kerri T. VierlingList of authors in order
- Landing page
-
https://doi.org/10.3389/frsen.2023.1196554Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3389/frsen.2023.1196554Direct OA link when available
- Concepts
-
Wildlife, Lidar, Habitat, Remote sensing, Environmental science, Geography, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
85Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4381431914 |
|---|---|
| doi | https://doi.org/10.3389/frsen.2023.1196554 |
| ids.doi | https://doi.org/10.3389/frsen.2023.1196554 |
| ids.openalex | https://openalex.org/W4381431914 |
| fwci | 2.94987648 |
| type | article |
| title | Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitat |
| awards[0].id | https://openalex.org/G3631127881 |
| awards[0].funder_id | https://openalex.org/F4320306101 |
| awards[0].display_name | |
| awards[0].funder_award_id | 80NSSC21K0192 |
| awards[0].funder_display_name | National Aeronautics and Space Administration |
| biblio.issue | |
| biblio.volume | 4 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T10111 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2303 |
| topics[1].subfield.display_name | Ecology |
| topics[1].display_name | Remote Sensing in Agriculture |
| topics[2].id | https://openalex.org/T10555 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9987000226974487 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Fire effects on ecosystems |
| funders[0].id | https://openalex.org/F4320306101 |
| funders[0].ror | https://ror.org/027ka1x80 |
| funders[0].display_name | National Aeronautics and Space Administration |
| is_xpac | False |
| apc_list.value | 1900 |
| apc_list.currency | USD |
| apc_list.value_usd | 1900 |
| apc_paid.value | 1900 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1900 |
| concepts[0].id | https://openalex.org/C29376679 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7003923654556274 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q241741 |
| concepts[0].display_name | Wildlife |
| concepts[1].id | https://openalex.org/C51399673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6146788597106934 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[1].display_name | Lidar |
| concepts[2].id | https://openalex.org/C185933670 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5698328018188477 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q52105 |
| concepts[2].display_name | Habitat |
| concepts[3].id | https://openalex.org/C62649853 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5277296304702759 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[3].display_name | Remote sensing |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4897348880767822 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4829684793949127 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C18903297 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3546936511993408 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[6].display_name | Ecology |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/wildlife |
| keywords[0].score | 0.7003923654556274 |
| keywords[0].display_name | Wildlife |
| keywords[1].id | https://openalex.org/keywords/lidar |
| keywords[1].score | 0.6146788597106934 |
| keywords[1].display_name | Lidar |
| keywords[2].id | https://openalex.org/keywords/habitat |
| keywords[2].score | 0.5698328018188477 |
| keywords[2].display_name | Habitat |
| keywords[3].id | https://openalex.org/keywords/remote-sensing |
| keywords[3].score | 0.5277296304702759 |
| keywords[3].display_name | Remote sensing |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.4897348880767822 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.4829684793949127 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/ecology |
| keywords[6].score | 0.3546936511993408 |
| keywords[6].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3389/frsen.2023.1196554 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210194326 |
| locations[0].source.issn | 2673-6187 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2673-6187 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3389/frsen.2023.1196554 |
| locations[1].id | pmh:oai:doaj.org/article:4e94f97de63d4cf896abd72ec9bf00a2 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Frontiers in Remote Sensing, Vol 4 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/4e94f97de63d4cf896abd72ec9bf00a2 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5052949522 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3639-8984 |
| authorships[0].author.display_name | Jody C. Vogeler |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[0].affiliations[0].raw_affiliation_string | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[0].institutions[0].id | https://openalex.org/I92446798 |
| authorships[0].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Colorado State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jody C. Vogeler |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[1].author.id | https://openalex.org/A5001038698 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-3225-2464 |
| authorships[1].author.display_name | Patrick A. Fekety |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[1].affiliations[0].raw_affiliation_string | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[1].institutions[0].id | https://openalex.org/I92446798 |
| authorships[1].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Colorado State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Patrick A. Fekety |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[2].author.id | https://openalex.org/A5017478690 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9089-3484 |
| authorships[2].author.display_name | Lisa H. Elliott |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I155093810 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| authorships[2].institutions[0].id | https://openalex.org/I155093810 |
| authorships[2].institutions[0].ror | https://ror.org/03hbp5t65 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I155093810 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Idaho |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lisa Elliott |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| authorships[3].author.id | https://openalex.org/A5020943295 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8212-8096 |
| authorships[3].author.display_name | Neal C. Swayze |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[3].affiliations[0].raw_affiliation_string | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[3].institutions[0].id | https://openalex.org/I92446798 |
| authorships[3].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Colorado State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Neal C. Swayze |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[4].author.id | https://openalex.org/A5043415399 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7291-0888 |
| authorships[4].author.display_name | Steven K. Filippelli |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I92446798 |
| authorships[4].affiliations[0].raw_affiliation_string | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[4].institutions[0].id | https://openalex.org/I92446798 |
| authorships[4].institutions[0].ror | https://ror.org/03k1gpj17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I92446798 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Colorado State University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Steven K. Filippelli |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Natural Resources Ecology Laboratory, Colorado State University, Fort Collins, CO, United States |
| authorships[5].author.id | https://openalex.org/A5062181764 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3077-4512 |
| authorships[5].author.display_name | Brent Barry |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I155093810 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| authorships[5].institutions[0].id | https://openalex.org/I155093810 |
| authorships[5].institutions[0].ror | https://ror.org/03hbp5t65 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I155093810 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Idaho |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Brent Barry |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| authorships[6].author.id | https://openalex.org/A5084322339 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7269-7690 |
| authorships[6].author.display_name | Joseph D. Holbrook |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I12834331 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States |
| authorships[6].institutions[0].id | https://openalex.org/I12834331 |
| authorships[6].institutions[0].ror | https://ror.org/01485tq96 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I12834331 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Wyoming |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Joseph D. Holbrook |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States |
| authorships[7].author.id | https://openalex.org/A5054315745 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-1874-8207 |
| authorships[7].author.display_name | Kerri T. Vierling |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I155093810 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| authorships[7].institutions[0].id | https://openalex.org/I155093810 |
| authorships[7].institutions[0].ror | https://ror.org/03hbp5t65 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I155093810 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Idaho |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Kerri T. Vierling |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3389/frsen.2023.1196554 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating GEDI data fusions for continuous characterizations of forest wildlife habitat |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W3011451421, https://openalex.org/W2012196540, https://openalex.org/W196913356, https://openalex.org/W2281163037, https://openalex.org/W2302096730, https://openalex.org/W270995004, https://openalex.org/W1524579078 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3389/frsen.2023.1196554 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210194326 |
| best_oa_location.source.issn | 2673-6187 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2673-6187 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3389/frsen.2023.1196554 |
| primary_location.id | doi:10.3389/frsen.2023.1196554 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210194326 |
| primary_location.source.issn | 2673-6187 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2673-6187 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3389/frsen.2023.1196554 |
| publication_date | 2023-06-20 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3198787260, https://openalex.org/W3110628212, https://openalex.org/W2582323655, https://openalex.org/W2808472282, https://openalex.org/W2100524057, https://openalex.org/W2911964244, https://openalex.org/W2076406689, https://openalex.org/W2994184478, https://openalex.org/W3012372416, https://openalex.org/W2724327356, https://openalex.org/W3030395860, https://openalex.org/W3011433584, https://openalex.org/W2080401607, https://openalex.org/W2000648382, https://openalex.org/W1966334841, https://openalex.org/W2067408254, https://openalex.org/W2768890619, https://openalex.org/W2895889040, https://openalex.org/W3003509779, https://openalex.org/W4205698403, https://openalex.org/W2909843488, https://openalex.org/W2520827770, https://openalex.org/W3013800112, https://openalex.org/W2997939733, https://openalex.org/W2148894762, https://openalex.org/W2913226741, https://openalex.org/W3082500559, https://openalex.org/W2010919282, https://openalex.org/W2564255923, https://openalex.org/W2045626198, https://openalex.org/W3086581147, https://openalex.org/W2116159613, https://openalex.org/W2117445811, https://openalex.org/W3105320548, https://openalex.org/W2769828489, https://openalex.org/W2801667818, https://openalex.org/W6628323955, https://openalex.org/W2322283415, https://openalex.org/W4210441393, https://openalex.org/W2940301500, https://openalex.org/W4311767486, https://openalex.org/W2167787089, https://openalex.org/W2048463265, https://openalex.org/W4249765819, https://openalex.org/W2886463967, https://openalex.org/W2965232594, https://openalex.org/W2400310958, https://openalex.org/W2027709818, https://openalex.org/W92445097, https://openalex.org/W4319966578, https://openalex.org/W2961451439, https://openalex.org/W2102901125, https://openalex.org/W2560167313, https://openalex.org/W2130037317, https://openalex.org/W3094643344, https://openalex.org/W2761120655, https://openalex.org/W6636950212, https://openalex.org/W4309768495, https://openalex.org/W4311086169, https://openalex.org/W3111227849, https://openalex.org/W4283013816, https://openalex.org/W4306398684, https://openalex.org/W3001668913, https://openalex.org/W2918715176, https://openalex.org/W2093393699, https://openalex.org/W1990748933, https://openalex.org/W1921895910, https://openalex.org/W2185576180, https://openalex.org/W2320197046, https://openalex.org/W3006607679, https://openalex.org/W2073597988, https://openalex.org/W2084082287, https://openalex.org/W2096311683, https://openalex.org/W2141963786, https://openalex.org/W2467736200, https://openalex.org/W2100841034, https://openalex.org/W1619870188, https://openalex.org/W2792173071, https://openalex.org/W2411334469, https://openalex.org/W2987917148, https://openalex.org/W2266591399, https://openalex.org/W1413645801, https://openalex.org/W2156307931, https://openalex.org/W2989983865, https://openalex.org/W4230795025 |
| referenced_works_count | 85 |
| abstract_inverted_index.2 | 223 |
| abstract_inverted_index.R | 222 |
| abstract_inverted_index.a | 127 |
| abstract_inverted_index.m | 99 |
| abstract_inverted_index.1) | 83 |
| abstract_inverted_index.2) | 120 |
| abstract_inverted_index.3) | 146 |
| abstract_inverted_index.30 | 98 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.We | 168 |
| abstract_inverted_index.as | 11, 13, 126, 236, 238, 333, 335 |
| abstract_inverted_index.be | 58 |
| abstract_inverted_index.in | 149 |
| abstract_inverted_index.of | 2, 28, 69, 78, 89, 103, 124, 136, 141, 244, 260, 282, 293, 304, 330 |
| abstract_inverted_index.on | 170 |
| abstract_inverted_index.to | 64, 195, 216, 228, 320 |
| abstract_inverted_index.up | 66, 300 |
| abstract_inverted_index.AUC | 269 |
| abstract_inverted_index.The | 76 |
| abstract_inverted_index.all | 213 |
| abstract_inverted_index.and | 25, 36, 87, 97, 118, 131, 145, 184, 190, 198, 248, 309 |
| abstract_inverted_index.any | 133 |
| abstract_inverted_index.are | 5, 318 |
| abstract_inverted_index.for | 7, 14, 32, 37, 93, 152, 158, 239, 242, 290, 298, 306, 327 |
| abstract_inverted_index.map | 240 |
| abstract_inverted_index.may | 57 |
| abstract_inverted_index.one | 174, 191 |
| abstract_inverted_index.our | 253, 279, 286 |
| abstract_inverted_index.six | 109 |
| abstract_inverted_index.the | 23, 48, 85, 122, 207, 261, 283, 291 |
| abstract_inverted_index.to: | 82 |
| abstract_inverted_index.two | 171 |
| abstract_inverted_index.use | 292 |
| abstract_inverted_index.was | 193 |
| abstract_inverted_index.0.36 | 227 |
| abstract_inverted_index.GEDI | 125, 209, 301 |
| abstract_inverted_index.U.S. | 111 |
| abstract_inverted_index.case | 255 |
| abstract_inverted_index.data | 31, 45, 61, 91, 129, 296 |
| abstract_inverted_index.from | 226, 272 |
| abstract_inverted_index.high | 217 |
| abstract_inverted_index.maps | 102, 138 |
| abstract_inverted_index.show | 288 |
| abstract_inverted_index.test | 321 |
| abstract_inverted_index.that | 175, 192, 277 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.well | 12, 237, 334 |
| abstract_inverted_index.were | 81, 231 |
| abstract_inverted_index.with | 17, 163, 274 |
| abstract_inverted_index.Model | 203 |
| abstract_inverted_index.While | 285 |
| abstract_inverted_index.broad | 313 |
| abstract_inverted_index.data; | 144 |
| abstract_inverted_index.eight | 104, 208 |
| abstract_inverted_index.lidar | 30, 55, 143 |
| abstract_inverted_index.model | 245 |
| abstract_inverted_index.novel | 43 |
| abstract_inverted_index.other | 310 |
| abstract_inverted_index.rates | 259 |
| abstract_inverted_index.scale | 65 |
| abstract_inverted_index.study | 80 |
| abstract_inverted_index.their | 322 |
| abstract_inverted_index.three | 159, 262 |
| abstract_inverted_index.time, | 42 |
| abstract_inverted_index.using | 139, 265 |
| abstract_inverted_index.value | 86, 305 |
| abstract_inverted_index.years | 243, 250 |
| abstract_inverted_index.(GEDI) | 54 |
| abstract_inverted_index.(model | 220 |
| abstract_inverted_index.0.76). | 229 |
| abstract_inverted_index.Global | 50 |
| abstract_inverted_index.Idaho, | 115 |
| abstract_inverted_index.Radar, | 181 |
| abstract_inverted_index.Within | 252 |
| abstract_inverted_index.across | 72, 108, 206, 312 |
| abstract_inverted_index.assess | 132 |
| abstract_inverted_index.biases | 135 |
| abstract_inverted_index.forest | 3, 70, 105, 165 |
| abstract_inverted_index.fusion | 62, 172, 234 |
| abstract_inverted_index.inputs | 267 |
| abstract_inverted_index.models | 96, 157 |
| abstract_inverted_index.needed | 319 |
| abstract_inverted_index.needs. | 167 |
| abstract_inverted_index.remote | 294 |
| abstract_inverted_index.source | 130 |
| abstract_inverted_index.states | 112 |
| abstract_inverted_index.values | 224, 270 |
| abstract_inverted_index.varied | 205 |
| abstract_inverted_index.within | 60, 154, 324 |
| abstract_inverted_index.Oregon, | 116 |
| abstract_inverted_index.Results | 230 |
| abstract_inverted_index.animals | 35 |
| abstract_inverted_index.between | 233 |
| abstract_inverted_index.examine | 147 |
| abstract_inverted_index.focused | 169 |
| abstract_inverted_index.further | 316 |
| abstract_inverted_index.fusions | 297 |
| abstract_inverted_index.habitat | 10, 40, 156, 307, 325 |
| abstract_inverted_index.metrics | 303 |
| abstract_inverted_index.model), | 189 |
| abstract_inverted_index.model). | 202 |
| abstract_inverted_index.models, | 173, 235 |
| abstract_inverted_index.promise | 289 |
| abstract_inverted_index.ranging | 225, 271 |
| abstract_inverted_index.results | 287 |
| abstract_inverted_index.samples | 140 |
| abstract_inverted_index.scaling | 299 |
| abstract_inverted_index.sensing | 295 |
| abstract_inverted_index.similar | 232 |
| abstract_inverted_index.sources | 92 |
| abstract_inverted_index.spatial | 24, 74 |
| abstract_inverted_index.species | 162, 264, 329 |
| abstract_inverted_index.testing | 221 |
| abstract_inverted_index.through | 41 |
| abstract_inverted_index.varying | 164 |
| abstract_inverted_index.western | 110 |
| abstract_inverted_index.yielded | 268 |
| abstract_inverted_index.Aperture | 180 |
| abstract_inverted_index.Dynamics | 52 |
| abstract_inverted_index.Landsat, | 177, 196 |
| abstract_inverted_index.Wyoming, | 114 |
| abstract_inverted_index.airborne | 29, 142 |
| abstract_inverted_index.although | 212 |
| abstract_inverted_index.combined | 176 |
| abstract_inverted_index.creation | 246 |
| abstract_inverted_index.critical | 6 |
| abstract_inverted_index.evaluate | 121 |
| abstract_inverted_index.extents, | 315 |
| abstract_inverted_index.extents. | 75 |
| abstract_inverted_index.followed | 278 |
| abstract_inverted_index.interest | 332 |
| abstract_inverted_index.keystone | 160 |
| abstract_inverted_index.measures | 107, 211 |
| abstract_inverted_index.modeling | 8, 257, 308, 326 |
| abstract_inverted_index.moderate | 215 |
| abstract_inverted_index.observed | 275 |
| abstract_inverted_index.overcome | 22 |
| abstract_inverted_index.products | 151 |
| abstract_inverted_index.sampling | 44 |
| abstract_inverted_index.sources, | 46 |
| abstract_inverted_index.species. | 284 |
| abstract_inverted_index.studies, | 256 |
| abstract_inverted_index.studying | 33 |
| abstract_inverted_index.temporal | 26 |
| abstract_inverted_index.wildlife | 9, 39, 155, 254 |
| abstract_inverted_index.(combined | 188 |
| abstract_inverted_index.Ecosystem | 51 |
| abstract_inverted_index.Montana); | 119 |
| abstract_inverted_index.Synthetic | 179 |
| abstract_inverted_index.assessing | 15 |
| abstract_inverted_index.ecosystem | 19 |
| abstract_inverted_index.encounter | 258 |
| abstract_inverted_index.estimates | 68 |
| abstract_inverted_index.including | 47 |
| abstract_inverted_index.inclusion | 153 |
| abstract_inverted_index.predictor | 186 |
| abstract_inverted_index.reference | 128 |
| abstract_inverted_index.satellite | 90 |
| abstract_inverted_index.services. | 20 |
| abstract_inverted_index.structure | 4, 71, 106, 166, 210, 302 |
| abstract_inverted_index.(Colorado, | 113 |
| abstract_inverted_index.Continuous | 0 |
| abstract_inverted_index.Sentinel-1 | 178 |
| abstract_inverted_index.additional | 18, 328 |
| abstract_inverted_index.continuous | 73, 314 |
| abstract_inverted_index.ecological | 280 |
| abstract_inverted_index.frameworks | 63 |
| abstract_inverted_index.generating | 94 |
| abstract_inverted_index.hindcasted | 249 |
| abstract_inverted_index.monitoring | 38 |
| abstract_inverted_index.objectives | 77 |
| abstract_inverted_index.predictive | 101, 218 |
| abstract_inverted_index.predictors | 200 |
| abstract_inverted_index.resolution | 100 |
| abstract_inverted_index.restricted | 194 |
| abstract_inverted_index.trade-offs | 16 |
| abstract_inverted_index.woodpecker | 161, 263 |
| abstract_inverted_index.0.76–0.87 | 273 |
| abstract_inverted_index.GEDI-fusion | 95, 137, 150, 266 |
| abstract_inverted_index.Washington, | 117 |
| abstract_inverted_index.assessments | 317 |
| abstract_inverted_index.bioclimatic | 185, 199 |
| abstract_inverted_index.differences | 148 |
| abstract_inverted_index.information | 187 |
| abstract_inverted_index.instrument, | 56 |
| abstract_inverted_index.investigate | 84 |
| abstract_inverted_index.limitations | 27, 88 |
| abstract_inverted_index.performance | 204, 219, 323 |
| abstract_inverted_index.space-borne | 49 |
| abstract_inverted_index.suitability | 123 |
| abstract_inverted_index.validations | 241 |
| abstract_inverted_index.applications | 311 |
| abstract_inverted_index.assessments. | 337 |
| abstract_inverted_index.biodiversity | 336 |
| abstract_inverted_index.conservation | 331 |
| abstract_inverted_index.disturbance, | 182 |
| abstract_inverted_index.incorporated | 59 |
| abstract_inverted_index.representing | 214 |
| abstract_inverted_index.topographic, | 183, 197 |
| abstract_inverted_index.wide-ranging | 34 |
| abstract_inverted_index.(2019–2020) | 247 |
| abstract_inverted_index.Investigation | 53 |
| abstract_inverted_index.relationships | 276 |
| abstract_inverted_index.understanding | 281 |
| abstract_inverted_index.(2016–2018). | 251 |
| abstract_inverted_index.spatiotemporal | 134 |
| abstract_inverted_index.satellite-based | 67 |
| abstract_inverted_index.(Landsat/topo/bio | 201 |
| abstract_inverted_index.characterizations | 1 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5052949522 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I92446798 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7699999809265137 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.89218049 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |