Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2505.23791
Federated Learning (FL) is a collaborative learning framework designed to protect client data, yet it remains highly vulnerable to Intellectual Property (IP) threats. Model extraction (ME) attacks pose a significant risk to Machine Learning as a Service (MLaaS) platforms, enabling attackers to replicate confidential models by querying black-box (without internal insight) APIs. Despite FL's privacy-preserving goals, its distributed nature makes it particularly susceptible to such attacks. This paper examines the vulnerability of FL-based victim models to two types of model extraction attacks. For various federated clients built under the NVFlare platform, we implemented ME attacks across two deep learning architectures and three image datasets. We evaluate the proposed ME attack performance using various metrics, including accuracy, fidelity, and KL divergence. The experiments show that for different FL clients, the accuracy and fidelity of the extracted model are closely related to the size of the attack query set. Additionally, we explore a transfer learning based approach where pretrained models serve as the starting point for the extraction process. The results indicate that the accuracy and fidelity of the fine-tuned pretrained extraction models are notably higher, particularly with smaller query sets, highlighting potential advantages for attackers.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2505.23791
- https://arxiv.org/pdf/2505.23791
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414855132
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414855132Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2505.23791Digital Object Identifier
- Title
-
Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated LearningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-25Full publication date if available
- Authors
-
Sayyed Farid Ahamed, Sandip Roy, Soumya Banerjee, Marc Vucovich, Kevin Choi, Abdul Rahman, Alison W. Hu, Edward Bowen, Sachin ShettyList of authors in order
- Landing page
-
https://arxiv.org/abs/2505.23791Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2505.23791Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2505.23791Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414855132 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2505.23791 |
| ids.doi | https://doi.org/10.48550/arxiv.2505.23791 |
| ids.openalex | https://openalex.org/W4414855132 |
| fwci | |
| type | preprint |
| title | Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2505.23791 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2505.23791 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2505.23791 |
| locations[1].id | doi:10.48550/arxiv.2505.23791 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2505.23791 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5001461808 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sayyed Farid Ahamed |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahamed, Sayyed Farid |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083317923 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5447-803X |
| authorships[1].author.display_name | Sandip Roy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roy, Sandip |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5047931012 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Soumya Banerjee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Banerjee, Soumya |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5045899357 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Marc Vucovich |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Vucovich, Marc |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055179055 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kevin Choi |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Choi, Kevin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100674691 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0953-5696 |
| authorships[5].author.display_name | Abdul Rahman |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rahman, Abdul |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5110304507 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Alison W. Hu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hu, Alison |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5063742042 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6566-1710 |
| authorships[7].author.display_name | Edward Bowen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bowen, Edward |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5052787847 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8789-0610 |
| authorships[8].author.display_name | Sachin Shetty |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Shetty, Sachin |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2505.23791 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating Query Efficiency and Accuracy of Transfer Learning-based Model Extraction Attack in Federated Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2505.23791 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2505.23791 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2505.23791 |
| primary_location.id | pmh:oai:arXiv.org:2505.23791 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2505.23791 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2505.23791 |
| publication_date | 2025-05-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 28, 35, 150 |
| abstract_inverted_index.FL | 126 |
| abstract_inverted_index.KL | 118 |
| abstract_inverted_index.ME | 93, 108 |
| abstract_inverted_index.We | 104 |
| abstract_inverted_index.as | 34, 159 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 14, 60 |
| abstract_inverted_index.of | 71, 78, 132, 142, 175 |
| abstract_inverted_index.to | 9, 18, 31, 41, 63, 75, 139 |
| abstract_inverted_index.we | 91, 148 |
| abstract_inverted_index.For | 82 |
| abstract_inverted_index.The | 120, 167 |
| abstract_inverted_index.and | 100, 117, 130, 173 |
| abstract_inverted_index.are | 136, 181 |
| abstract_inverted_index.for | 124, 163, 192 |
| abstract_inverted_index.its | 56 |
| abstract_inverted_index.the | 69, 88, 106, 128, 133, 140, 143, 160, 164, 171, 176 |
| abstract_inverted_index.two | 76, 96 |
| abstract_inverted_index.yet | 13 |
| abstract_inverted_index.(FL) | 2 |
| abstract_inverted_index.(IP) | 21 |
| abstract_inverted_index.(ME) | 25 |
| abstract_inverted_index.FL's | 53 |
| abstract_inverted_index.This | 66 |
| abstract_inverted_index.deep | 97 |
| abstract_inverted_index.pose | 27 |
| abstract_inverted_index.risk | 30 |
| abstract_inverted_index.set. | 146 |
| abstract_inverted_index.show | 122 |
| abstract_inverted_index.size | 141 |
| abstract_inverted_index.such | 64 |
| abstract_inverted_index.that | 123, 170 |
| abstract_inverted_index.with | 185 |
| abstract_inverted_index.APIs. | 51 |
| abstract_inverted_index.Model | 23 |
| abstract_inverted_index.based | 153 |
| abstract_inverted_index.built | 86 |
| abstract_inverted_index.data, | 12 |
| abstract_inverted_index.image | 102 |
| abstract_inverted_index.makes | 59 |
| abstract_inverted_index.model | 79, 135 |
| abstract_inverted_index.paper | 67 |
| abstract_inverted_index.point | 162 |
| abstract_inverted_index.query | 145, 187 |
| abstract_inverted_index.serve | 158 |
| abstract_inverted_index.sets, | 188 |
| abstract_inverted_index.three | 101 |
| abstract_inverted_index.types | 77 |
| abstract_inverted_index.under | 87 |
| abstract_inverted_index.using | 111 |
| abstract_inverted_index.where | 155 |
| abstract_inverted_index.across | 95 |
| abstract_inverted_index.attack | 109, 144 |
| abstract_inverted_index.client | 11 |
| abstract_inverted_index.goals, | 55 |
| abstract_inverted_index.highly | 16 |
| abstract_inverted_index.models | 44, 74, 157, 180 |
| abstract_inverted_index.nature | 58 |
| abstract_inverted_index.victim | 73 |
| abstract_inverted_index.(MLaaS) | 37 |
| abstract_inverted_index.Despite | 52 |
| abstract_inverted_index.Machine | 32 |
| abstract_inverted_index.NVFlare | 89 |
| abstract_inverted_index.Service | 36 |
| abstract_inverted_index.attacks | 26, 94 |
| abstract_inverted_index.clients | 85 |
| abstract_inverted_index.closely | 137 |
| abstract_inverted_index.explore | 149 |
| abstract_inverted_index.higher, | 183 |
| abstract_inverted_index.notably | 182 |
| abstract_inverted_index.protect | 10 |
| abstract_inverted_index.related | 138 |
| abstract_inverted_index.remains | 15 |
| abstract_inverted_index.results | 168 |
| abstract_inverted_index.smaller | 186 |
| abstract_inverted_index.various | 83, 112 |
| abstract_inverted_index.(without | 48 |
| abstract_inverted_index.FL-based | 72 |
| abstract_inverted_index.Learning | 1, 33 |
| abstract_inverted_index.Property | 20 |
| abstract_inverted_index.accuracy | 129, 172 |
| abstract_inverted_index.approach | 154 |
| abstract_inverted_index.attacks. | 65, 81 |
| abstract_inverted_index.clients, | 127 |
| abstract_inverted_index.designed | 8 |
| abstract_inverted_index.enabling | 39 |
| abstract_inverted_index.evaluate | 105 |
| abstract_inverted_index.examines | 68 |
| abstract_inverted_index.fidelity | 131, 174 |
| abstract_inverted_index.indicate | 169 |
| abstract_inverted_index.insight) | 50 |
| abstract_inverted_index.internal | 49 |
| abstract_inverted_index.learning | 6, 98, 152 |
| abstract_inverted_index.metrics, | 113 |
| abstract_inverted_index.process. | 166 |
| abstract_inverted_index.proposed | 107 |
| abstract_inverted_index.querying | 46 |
| abstract_inverted_index.starting | 161 |
| abstract_inverted_index.threats. | 22 |
| abstract_inverted_index.transfer | 151 |
| abstract_inverted_index.Federated | 0 |
| abstract_inverted_index.accuracy, | 115 |
| abstract_inverted_index.attackers | 40 |
| abstract_inverted_index.black-box | 47 |
| abstract_inverted_index.datasets. | 103 |
| abstract_inverted_index.different | 125 |
| abstract_inverted_index.extracted | 134 |
| abstract_inverted_index.federated | 84 |
| abstract_inverted_index.fidelity, | 116 |
| abstract_inverted_index.framework | 7 |
| abstract_inverted_index.including | 114 |
| abstract_inverted_index.platform, | 90 |
| abstract_inverted_index.potential | 190 |
| abstract_inverted_index.replicate | 42 |
| abstract_inverted_index.advantages | 191 |
| abstract_inverted_index.attackers. | 193 |
| abstract_inverted_index.extraction | 24, 80, 165, 179 |
| abstract_inverted_index.fine-tuned | 177 |
| abstract_inverted_index.platforms, | 38 |
| abstract_inverted_index.pretrained | 156, 178 |
| abstract_inverted_index.vulnerable | 17 |
| abstract_inverted_index.distributed | 57 |
| abstract_inverted_index.divergence. | 119 |
| abstract_inverted_index.experiments | 121 |
| abstract_inverted_index.implemented | 92 |
| abstract_inverted_index.performance | 110 |
| abstract_inverted_index.significant | 29 |
| abstract_inverted_index.susceptible | 62 |
| abstract_inverted_index.Intellectual | 19 |
| abstract_inverted_index.confidential | 43 |
| abstract_inverted_index.highlighting | 189 |
| abstract_inverted_index.particularly | 61, 184 |
| abstract_inverted_index.Additionally, | 147 |
| abstract_inverted_index.architectures | 99 |
| abstract_inverted_index.collaborative | 5 |
| abstract_inverted_index.vulnerability | 70 |
| abstract_inverted_index.privacy-preserving | 54 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |