Evaluating Temperature Scaling Calibration Effectiveness for CNNs under Varying Noise Levels in Brain Tumour Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.24951
Precise confidence estimation in deep learning is vital for high-stakes fields like medical imaging, where overconfident misclassifications can have serious consequences. This work evaluates the effectiveness of Temperature Scaling (TS), a post-hoc calibration technique, in improving the reliability of convolutional neural networks (CNNs) for brain tumor classification. We develop a custom CNN and train it on a merged brain MRI dataset. To simulate real-world uncertainty, five types of image noise are introduced: Gaussian, Poisson, Salt & Pepper, Speckle, and Uniform. Model performance is evaluated using precision, recall, F1-score, accuracy, negative log-likelihood (NLL), and expected calibration error (ECE), both before and after calibration. Results demonstrate that TS significantly reduces ECE and NLL under all noise conditions without degrading classification accuracy. This underscores TS as an effective and computationally efficient approach to enhance decision confidence of medical AI systems, hence making model outputs more reliable in noisy or uncertain settings.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.24951
- https://arxiv.org/pdf/2509.24951
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415337446
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415337446Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.24951Digital Object Identifier
- Title
-
Evaluating Temperature Scaling Calibration Effectiveness for CNNs under Varying Noise Levels in Brain Tumour DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-29Full publication date if available
- Authors
-
Ankush Chanda, Kaushik Roy Choudhury, Sanjoy Roy, Suman Biswas, Somenath KuiryList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.24951Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.24951Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.24951Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415337446 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.24951 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.24951 |
| ids.openalex | https://openalex.org/W4415337446 |
| fwci | |
| type | preprint |
| title | Evaluating Temperature Scaling Calibration Effectiveness for CNNs under Varying Noise Levels in Brain Tumour Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12994 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9864000082015991 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Infrared Thermography in Medicine |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9595999717712402 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9320999979972839 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.24951 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.24951 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.24951 |
| locations[1].id | doi:10.48550/arxiv.2509.24951 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.24951 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5087109972 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6826-2048 |
| authorships[0].author.display_name | Ankush Chanda |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chanda, Ankur |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5066655760 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6170-5889 |
| authorships[1].author.display_name | Kaushik Roy Choudhury |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Choudhury, Kushan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5042302493 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5699-0758 |
| authorships[2].author.display_name | Sanjoy Roy |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Roy, Shubhrodeep |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091581676 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3334-3486 |
| authorships[3].author.display_name | Suman Biswas |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Biswas, Shubhajit |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052095729 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8462-5547 |
| authorships[4].author.display_name | Somenath Kuiry |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kuiry, Somenath |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.24951 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-19T00:00:00 |
| display_name | Evaluating Temperature Scaling Calibration Effectiveness for CNNs under Varying Noise Levels in Brain Tumour Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12994 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9864000082015991 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Infrared Thermography in Medicine |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.24951 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.24951 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.24951 |
| primary_location.id | pmh:oai:arXiv.org:2509.24951 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.24951 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.24951 |
| publication_date | 2025-09-29 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 49, 56 |
| abstract_inverted_index.AI | 135 |
| abstract_inverted_index.TS | 105, 121 |
| abstract_inverted_index.To | 61 |
| abstract_inverted_index.We | 47 |
| abstract_inverted_index.an | 123 |
| abstract_inverted_index.as | 122 |
| abstract_inverted_index.in | 3, 34, 143 |
| abstract_inverted_index.is | 6, 82 |
| abstract_inverted_index.it | 54 |
| abstract_inverted_index.of | 26, 38, 67, 133 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.or | 145 |
| abstract_inverted_index.to | 129 |
| abstract_inverted_index.CNN | 51 |
| abstract_inverted_index.ECE | 108 |
| abstract_inverted_index.MRI | 59 |
| abstract_inverted_index.NLL | 110 |
| abstract_inverted_index.all | 112 |
| abstract_inverted_index.and | 52, 78, 92, 99, 109, 125 |
| abstract_inverted_index.are | 70 |
| abstract_inverted_index.can | 17 |
| abstract_inverted_index.for | 8, 43 |
| abstract_inverted_index.the | 24, 36 |
| abstract_inverted_index.Salt | 74 |
| abstract_inverted_index.This | 21, 119 |
| abstract_inverted_index.both | 97 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.five | 65 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.like | 11 |
| abstract_inverted_index.more | 141 |
| abstract_inverted_index.that | 104 |
| abstract_inverted_index.work | 22 |
| abstract_inverted_index.& | 75 |
| abstract_inverted_index.(TS), | 29 |
| abstract_inverted_index.Model | 80 |
| abstract_inverted_index.after | 100 |
| abstract_inverted_index.brain | 44, 58 |
| abstract_inverted_index.error | 95 |
| abstract_inverted_index.hence | 137 |
| abstract_inverted_index.image | 68 |
| abstract_inverted_index.model | 139 |
| abstract_inverted_index.noise | 69, 113 |
| abstract_inverted_index.noisy | 144 |
| abstract_inverted_index.train | 53 |
| abstract_inverted_index.tumor | 45 |
| abstract_inverted_index.types | 66 |
| abstract_inverted_index.under | 111 |
| abstract_inverted_index.using | 84 |
| abstract_inverted_index.vital | 7 |
| abstract_inverted_index.where | 14 |
| abstract_inverted_index.(CNNs) | 42 |
| abstract_inverted_index.(ECE), | 96 |
| abstract_inverted_index.(NLL), | 91 |
| abstract_inverted_index.before | 98 |
| abstract_inverted_index.custom | 50 |
| abstract_inverted_index.fields | 10 |
| abstract_inverted_index.making | 138 |
| abstract_inverted_index.merged | 57 |
| abstract_inverted_index.neural | 40 |
| abstract_inverted_index.Pepper, | 76 |
| abstract_inverted_index.Precise | 0 |
| abstract_inverted_index.Results | 102 |
| abstract_inverted_index.Scaling | 28 |
| abstract_inverted_index.develop | 48 |
| abstract_inverted_index.enhance | 130 |
| abstract_inverted_index.medical | 12, 134 |
| abstract_inverted_index.outputs | 140 |
| abstract_inverted_index.recall, | 86 |
| abstract_inverted_index.reduces | 107 |
| abstract_inverted_index.serious | 19 |
| abstract_inverted_index.without | 115 |
| abstract_inverted_index.Poisson, | 73 |
| abstract_inverted_index.Speckle, | 77 |
| abstract_inverted_index.Uniform. | 79 |
| abstract_inverted_index.approach | 128 |
| abstract_inverted_index.dataset. | 60 |
| abstract_inverted_index.decision | 131 |
| abstract_inverted_index.expected | 93 |
| abstract_inverted_index.imaging, | 13 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.negative | 89 |
| abstract_inverted_index.networks | 41 |
| abstract_inverted_index.post-hoc | 31 |
| abstract_inverted_index.reliable | 142 |
| abstract_inverted_index.simulate | 62 |
| abstract_inverted_index.systems, | 136 |
| abstract_inverted_index.F1-score, | 87 |
| abstract_inverted_index.Gaussian, | 72 |
| abstract_inverted_index.accuracy, | 88 |
| abstract_inverted_index.accuracy. | 118 |
| abstract_inverted_index.degrading | 116 |
| abstract_inverted_index.effective | 124 |
| abstract_inverted_index.efficient | 127 |
| abstract_inverted_index.evaluated | 83 |
| abstract_inverted_index.evaluates | 23 |
| abstract_inverted_index.improving | 35 |
| abstract_inverted_index.settings. | 147 |
| abstract_inverted_index.uncertain | 146 |
| abstract_inverted_index.conditions | 114 |
| abstract_inverted_index.confidence | 1, 132 |
| abstract_inverted_index.estimation | 2 |
| abstract_inverted_index.precision, | 85 |
| abstract_inverted_index.real-world | 63 |
| abstract_inverted_index.technique, | 33 |
| abstract_inverted_index.Temperature | 27 |
| abstract_inverted_index.calibration | 32, 94 |
| abstract_inverted_index.demonstrate | 103 |
| abstract_inverted_index.high-stakes | 9 |
| abstract_inverted_index.introduced: | 71 |
| abstract_inverted_index.performance | 81 |
| abstract_inverted_index.reliability | 37 |
| abstract_inverted_index.underscores | 120 |
| abstract_inverted_index.calibration. | 101 |
| abstract_inverted_index.uncertainty, | 64 |
| abstract_inverted_index.consequences. | 20 |
| abstract_inverted_index.convolutional | 39 |
| abstract_inverted_index.effectiveness | 25 |
| abstract_inverted_index.overconfident | 15 |
| abstract_inverted_index.significantly | 106 |
| abstract_inverted_index.classification | 117 |
| abstract_inverted_index.log-likelihood | 90 |
| abstract_inverted_index.classification. | 46 |
| abstract_inverted_index.computationally | 126 |
| abstract_inverted_index.misclassifications | 16 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |