Evaluating the Alignment of a Data Analysis between Analyst and Audience Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2312.07616
A challenge that data analysts face is building a data analysis that is useful for a given consumer. Previously, we defined a set of principles for describing data analyses that can be used to create a data analysis and to characterize the variation between analyses. Here, we introduce a concept that we call the alignment of a data analysis between the data analyst and a consumer. We define a successfully aligned data analysis as the matching of principles between the analyst and the consumer for whom the analysis is developed. In this paper, we propose a statistical model for evaluating the alignment of a data analysis and describe some of its properties. We argue that this framework provides a language for characterizing alignment and can be used as a guide for practicing data scientists and students in data science courses for how to build better data analyses.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2312.07616
- https://arxiv.org/pdf/2312.07616
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389767752
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389767752Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2312.07616Digital Object Identifier
- Title
-
Evaluating the Alignment of a Data Analysis between Analyst and AudienceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-11Full publication date if available
- Authors
-
Lucy D’Agostino McGowan, Roger D. Peng, Stephanie C. HicksList of authors in order
- Landing page
-
https://arxiv.org/abs/2312.07616Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2312.07616Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2312.07616Direct OA link when available
- Concepts
-
Computer science, Data science, Data set, Set (abstract data type), Matching (statistics), Data analysis, Variation (astronomy), Data mining, Information retrieval, Artificial intelligence, Physics, Astrophysics, Statistics, Mathematics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389767752 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2312.07616 |
| ids.doi | https://doi.org/10.48550/arxiv.2312.07616 |
| ids.openalex | https://openalex.org/W4389767752 |
| fwci | |
| type | preprint |
| title | Evaluating the Alignment of a Data Analysis between Analyst and Audience |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10799 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9850999712944031 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Data Visualization and Analytics |
| topics[1].id | https://openalex.org/T13398 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9663000106811523 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Analysis with R |
| topics[2].id | https://openalex.org/T11875 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9642999768257141 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistics Education and Methodologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7571012377738953 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.684866189956665 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C58489278 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6497611403465271 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[2].display_name | Data set |
| concepts[3].id | https://openalex.org/C177264268 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6116200685501099 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[3].display_name | Set (abstract data type) |
| concepts[4].id | https://openalex.org/C165064840 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5782220959663391 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[4].display_name | Matching (statistics) |
| concepts[5].id | https://openalex.org/C175801342 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5488827228546143 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1988917 |
| concepts[5].display_name | Data analysis |
| concepts[6].id | https://openalex.org/C2778334786 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4967239499092102 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1586270 |
| concepts[6].display_name | Variation (astronomy) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4423346519470215 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C23123220 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38279399275779724 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[8].display_name | Information retrieval |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.12868371605873108 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C44870925 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[11].display_name | Astrophysics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7571012377738953 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.684866189956665 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/data-set |
| keywords[2].score | 0.6497611403465271 |
| keywords[2].display_name | Data set |
| keywords[3].id | https://openalex.org/keywords/set |
| keywords[3].score | 0.6116200685501099 |
| keywords[3].display_name | Set (abstract data type) |
| keywords[4].id | https://openalex.org/keywords/matching |
| keywords[4].score | 0.5782220959663391 |
| keywords[4].display_name | Matching (statistics) |
| keywords[5].id | https://openalex.org/keywords/data-analysis |
| keywords[5].score | 0.5488827228546143 |
| keywords[5].display_name | Data analysis |
| keywords[6].id | https://openalex.org/keywords/variation |
| keywords[6].score | 0.4967239499092102 |
| keywords[6].display_name | Variation (astronomy) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.4423346519470215 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/information-retrieval |
| keywords[8].score | 0.38279399275779724 |
| keywords[8].display_name | Information retrieval |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.12868371605873108 |
| keywords[9].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2312.07616 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2312.07616 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2312.07616 |
| locations[1].id | doi:10.48550/arxiv.2312.07616 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2312.07616 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5070177612 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7297-9359 |
| authorships[0].author.display_name | Lucy D’Agostino McGowan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | McGowan, Lucy D'Agostino |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023824672 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0572-9055 |
| authorships[1].author.display_name | Roger D. Peng |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng, Roger D. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028505800 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7858-0231 |
| authorships[2].author.display_name | Stephanie C. Hicks |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Hicks, Stephanie C. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2312.07616 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating the Alignment of a Data Analysis between Analyst and Audience |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10799 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9850999712944031 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Data Visualization and Analytics |
| related_works | https://openalex.org/W2386430105, https://openalex.org/W2356521405, https://openalex.org/W2038534795, https://openalex.org/W2384358604, https://openalex.org/W1567829292, https://openalex.org/W3001063351, https://openalex.org/W3196905815, https://openalex.org/W2351370765, https://openalex.org/W3133811809, https://openalex.org/W2594414941 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2312.07616 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2312.07616 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2312.07616 |
| primary_location.id | pmh:oai:arXiv.org:2312.07616 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2312.07616 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2312.07616 |
| publication_date | 2023-12-11 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 8, 15, 21, 35, 48, 56, 64, 68, 95, 103, 118, 128 |
| abstract_inverted_index.In | 90 |
| abstract_inverted_index.We | 66, 112 |
| abstract_inverted_index.as | 73, 127 |
| abstract_inverted_index.be | 31, 125 |
| abstract_inverted_index.in | 136 |
| abstract_inverted_index.is | 6, 12, 88 |
| abstract_inverted_index.of | 23, 55, 76, 102, 109 |
| abstract_inverted_index.to | 33, 39, 142 |
| abstract_inverted_index.we | 19, 46, 51, 93 |
| abstract_inverted_index.and | 38, 63, 81, 106, 123, 134 |
| abstract_inverted_index.can | 30, 124 |
| abstract_inverted_index.for | 14, 25, 84, 98, 120, 130, 140 |
| abstract_inverted_index.how | 141 |
| abstract_inverted_index.its | 110 |
| abstract_inverted_index.set | 22 |
| abstract_inverted_index.the | 41, 53, 60, 74, 79, 82, 86, 100 |
| abstract_inverted_index.call | 52 |
| abstract_inverted_index.data | 3, 9, 27, 36, 57, 61, 71, 104, 132, 137, 145 |
| abstract_inverted_index.face | 5 |
| abstract_inverted_index.some | 108 |
| abstract_inverted_index.that | 2, 11, 29, 50, 114 |
| abstract_inverted_index.this | 91, 115 |
| abstract_inverted_index.used | 32, 126 |
| abstract_inverted_index.whom | 85 |
| abstract_inverted_index.Here, | 45 |
| abstract_inverted_index.argue | 113 |
| abstract_inverted_index.build | 143 |
| abstract_inverted_index.given | 16 |
| abstract_inverted_index.guide | 129 |
| abstract_inverted_index.model | 97 |
| abstract_inverted_index.better | 144 |
| abstract_inverted_index.create | 34 |
| abstract_inverted_index.define | 67 |
| abstract_inverted_index.paper, | 92 |
| abstract_inverted_index.useful | 13 |
| abstract_inverted_index.aligned | 70 |
| abstract_inverted_index.analyst | 62, 80 |
| abstract_inverted_index.between | 43, 59, 78 |
| abstract_inverted_index.concept | 49 |
| abstract_inverted_index.courses | 139 |
| abstract_inverted_index.defined | 20 |
| abstract_inverted_index.propose | 94 |
| abstract_inverted_index.science | 138 |
| abstract_inverted_index.analyses | 28 |
| abstract_inverted_index.analysis | 10, 37, 58, 72, 87, 105 |
| abstract_inverted_index.analysts | 4 |
| abstract_inverted_index.building | 7 |
| abstract_inverted_index.consumer | 83 |
| abstract_inverted_index.describe | 107 |
| abstract_inverted_index.language | 119 |
| abstract_inverted_index.matching | 75 |
| abstract_inverted_index.provides | 117 |
| abstract_inverted_index.students | 135 |
| abstract_inverted_index.alignment | 54, 101, 122 |
| abstract_inverted_index.analyses. | 44, 146 |
| abstract_inverted_index.challenge | 1 |
| abstract_inverted_index.consumer. | 17, 65 |
| abstract_inverted_index.framework | 116 |
| abstract_inverted_index.introduce | 47 |
| abstract_inverted_index.variation | 42 |
| abstract_inverted_index.describing | 26 |
| abstract_inverted_index.developed. | 89 |
| abstract_inverted_index.evaluating | 99 |
| abstract_inverted_index.practicing | 131 |
| abstract_inverted_index.principles | 24, 77 |
| abstract_inverted_index.scientists | 133 |
| abstract_inverted_index.Previously, | 18 |
| abstract_inverted_index.properties. | 111 |
| abstract_inverted_index.statistical | 96 |
| abstract_inverted_index.characterize | 40 |
| abstract_inverted_index.successfully | 69 |
| abstract_inverted_index.characterizing | 121 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |