Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2205.12253
Despite their strong performance on many tasks, pre-trained language models have been shown to struggle on out-of-distribution compositional generalization. Meanwhile, recent work has shown considerable improvements on many NLP tasks from model scaling. Can scaling up model size also improve compositional generalization in semantic parsing? We evaluate encoder-decoder models up to 11B parameters and decoder-only models up to 540B parameters, and compare model scaling curves for three different methods for applying a pre-trained language model to a new task: fine-tuning all parameters, prompt tuning, and in-context learning. We observe that fine-tuning generally has flat or negative scaling curves on out-of-distribution compositional generalization in semantic parsing evaluations. In-context learning has positive scaling curves, but is generally outperformed by much smaller fine-tuned models. Prompt-tuning can outperform fine-tuning, suggesting further potential improvements from scaling as it exhibits a more positive scaling curve. Additionally, we identify several error trends that vary with model scale. For example, larger models are generally better at modeling the syntax of the output space, but are also more prone to certain types of overfitting. Overall, our study highlights limitations of current techniques for effectively leveraging model scale for compositional generalization, while our analysis also suggests promising directions for future work.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2205.12253
- https://arxiv.org/pdf/2205.12253
- OA Status
- green
- Cited By
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4281566743
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4281566743Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2205.12253Digital Object Identifier
- Title
-
Evaluating the Impact of Model Scale for Compositional Generalization in Semantic ParsingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-05-24Full publication date if available
- Authors
-
Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi, Jonathan Herzig, Emily Pitler, Fei Sha, Kristina ToutanovaList of authors in order
- Landing page
-
https://arxiv.org/abs/2205.12253Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2205.12253Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2205.12253Direct OA link when available
- Concepts
-
Generalization, Overfitting, Computer science, Scaling, Context (archaeology), Parsing, Artificial intelligence, Syntax, Task (project management), Language model, Scale (ratio), Natural language processing, Machine learning, Mathematics, Artificial neural network, Economics, Management, Geometry, Mathematical analysis, Physics, Biology, Paleontology, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4281566743 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2205.12253 |
| ids.doi | https://doi.org/10.48550/arxiv.2205.12253 |
| ids.openalex | https://openalex.org/W4281566743 |
| fwci | |
| type | preprint |
| title | Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9987000226974487 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9453999996185303 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7925868630409241 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C22019652 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7888014316558838 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[1].display_name | Overfitting |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7686322927474976 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C99844830 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6983336806297302 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[3].display_name | Scaling |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.62385094165802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C186644900 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5666466951370239 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q194152 |
| concepts[5].display_name | Parsing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5515282154083252 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C60048249 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5467060208320618 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37437 |
| concepts[7].display_name | Syntax |
| concepts[8].id | https://openalex.org/C2780451532 |
| concepts[8].level | 2 |
| concepts[8].score | 0.526669442653656 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[8].display_name | Task (project management) |
| concepts[9].id | https://openalex.org/C137293760 |
| concepts[9].level | 2 |
| concepts[9].score | 0.46829384565353394 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[9].display_name | Language model |
| concepts[10].id | https://openalex.org/C2778755073 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4173322319984436 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[10].display_name | Scale (ratio) |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3785257339477539 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3570443391799927 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15784457325935364 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C50644808 |
| concepts[14].level | 2 |
| concepts[14].score | 0.11240142583847046 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[14].display_name | Artificial neural network |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C134306372 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[18].display_name | Mathematical analysis |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C86803240 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[20].display_name | Biology |
| concepts[21].id | https://openalex.org/C151730666 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[21].display_name | Paleontology |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7925868630409241 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/overfitting |
| keywords[1].score | 0.7888014316558838 |
| keywords[1].display_name | Overfitting |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7686322927474976 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/scaling |
| keywords[3].score | 0.6983336806297302 |
| keywords[3].display_name | Scaling |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.62385094165802 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/parsing |
| keywords[5].score | 0.5666466951370239 |
| keywords[5].display_name | Parsing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5515282154083252 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/syntax |
| keywords[7].score | 0.5467060208320618 |
| keywords[7].display_name | Syntax |
| keywords[8].id | https://openalex.org/keywords/task |
| keywords[8].score | 0.526669442653656 |
| keywords[8].display_name | Task (project management) |
| keywords[9].id | https://openalex.org/keywords/language-model |
| keywords[9].score | 0.46829384565353394 |
| keywords[9].display_name | Language model |
| keywords[10].id | https://openalex.org/keywords/scale |
| keywords[10].score | 0.4173322319984436 |
| keywords[10].display_name | Scale (ratio) |
| keywords[11].id | https://openalex.org/keywords/natural-language-processing |
| keywords[11].score | 0.3785257339477539 |
| keywords[11].display_name | Natural language processing |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.3570443391799927 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.15784457325935364 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[14].score | 0.11240142583847046 |
| keywords[14].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2205.12253 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2205.12253 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2205.12253 |
| locations[1].id | doi:10.48550/arxiv.2205.12253 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2205.12253 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5003617960 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1696-5419 |
| authorships[0].author.display_name | Linlu Qiu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qiu, Linlu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5106185324 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Peter Shaw |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shaw, Peter |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5035867340 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Panupong Pasupat |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pasupat, Panupong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5112027715 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tianze Shi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shi, Tianze |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5071893787 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-7227-6557 |
| authorships[4].author.display_name | Jonathan Herzig |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Herzig, Jonathan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5089519482 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Emily Pitler |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pitler, Emily |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5101544732 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9382-0010 |
| authorships[6].author.display_name | Fei Sha |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sha, Fei |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5053947885 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Kristina Toutanova |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Toutanova, Kristina |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2205.12253 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating the Impact of Model Scale for Compositional Generalization in Semantic Parsing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4362597605, https://openalex.org/W1574414179, https://openalex.org/W3009056573, https://openalex.org/W4297676672, https://openalex.org/W2922073769, https://openalex.org/W4281702477, https://openalex.org/W2490526372, https://openalex.org/W4376166922, https://openalex.org/W2077104824, https://openalex.org/W2168778844 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2205.12253 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2205.12253 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2205.12253 |
| primary_location.id | pmh:oai:arXiv.org:2205.12253 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2205.12253 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2205.12253 |
| publication_date | 2022-05-24 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 71, 76, 134 |
| abstract_inverted_index.We | 45, 87 |
| abstract_inverted_index.as | 131 |
| abstract_inverted_index.at | 157 |
| abstract_inverted_index.by | 116 |
| abstract_inverted_index.in | 42, 102 |
| abstract_inverted_index.is | 113 |
| abstract_inverted_index.it | 132 |
| abstract_inverted_index.of | 161, 173, 180 |
| abstract_inverted_index.on | 4, 15, 26, 98 |
| abstract_inverted_index.or | 94 |
| abstract_inverted_index.to | 13, 50, 57, 75, 170 |
| abstract_inverted_index.up | 35, 49, 56 |
| abstract_inverted_index.we | 140 |
| abstract_inverted_index.11B | 51 |
| abstract_inverted_index.Can | 33 |
| abstract_inverted_index.For | 150 |
| abstract_inverted_index.NLP | 28 |
| abstract_inverted_index.all | 80 |
| abstract_inverted_index.and | 53, 60, 84 |
| abstract_inverted_index.are | 154, 166 |
| abstract_inverted_index.but | 112, 165 |
| abstract_inverted_index.can | 122 |
| abstract_inverted_index.for | 65, 69, 183, 188, 198 |
| abstract_inverted_index.has | 22, 92, 108 |
| abstract_inverted_index.new | 77 |
| abstract_inverted_index.our | 176, 192 |
| abstract_inverted_index.the | 159, 162 |
| abstract_inverted_index.540B | 58 |
| abstract_inverted_index.also | 38, 167, 194 |
| abstract_inverted_index.been | 11 |
| abstract_inverted_index.flat | 93 |
| abstract_inverted_index.from | 30, 129 |
| abstract_inverted_index.have | 10 |
| abstract_inverted_index.many | 5, 27 |
| abstract_inverted_index.more | 135, 168 |
| abstract_inverted_index.much | 117 |
| abstract_inverted_index.size | 37 |
| abstract_inverted_index.that | 89, 145 |
| abstract_inverted_index.vary | 146 |
| abstract_inverted_index.with | 147 |
| abstract_inverted_index.work | 21 |
| abstract_inverted_index.error | 143 |
| abstract_inverted_index.model | 31, 36, 62, 74, 148, 186 |
| abstract_inverted_index.prone | 169 |
| abstract_inverted_index.scale | 187 |
| abstract_inverted_index.shown | 12, 23 |
| abstract_inverted_index.study | 177 |
| abstract_inverted_index.task: | 78 |
| abstract_inverted_index.tasks | 29 |
| abstract_inverted_index.their | 1 |
| abstract_inverted_index.three | 66 |
| abstract_inverted_index.types | 172 |
| abstract_inverted_index.while | 191 |
| abstract_inverted_index.work. | 200 |
| abstract_inverted_index.better | 156 |
| abstract_inverted_index.curve. | 138 |
| abstract_inverted_index.curves | 64, 97 |
| abstract_inverted_index.future | 199 |
| abstract_inverted_index.larger | 152 |
| abstract_inverted_index.models | 9, 48, 55, 153 |
| abstract_inverted_index.output | 163 |
| abstract_inverted_index.prompt | 82 |
| abstract_inverted_index.recent | 20 |
| abstract_inverted_index.scale. | 149 |
| abstract_inverted_index.space, | 164 |
| abstract_inverted_index.strong | 2 |
| abstract_inverted_index.syntax | 160 |
| abstract_inverted_index.tasks, | 6 |
| abstract_inverted_index.trends | 144 |
| abstract_inverted_index.Despite | 0 |
| abstract_inverted_index.certain | 171 |
| abstract_inverted_index.compare | 61 |
| abstract_inverted_index.current | 181 |
| abstract_inverted_index.curves, | 111 |
| abstract_inverted_index.further | 126 |
| abstract_inverted_index.improve | 39 |
| abstract_inverted_index.methods | 68 |
| abstract_inverted_index.models. | 120 |
| abstract_inverted_index.observe | 88 |
| abstract_inverted_index.parsing | 104 |
| abstract_inverted_index.scaling | 34, 63, 96, 110, 130, 137 |
| abstract_inverted_index.several | 142 |
| abstract_inverted_index.smaller | 118 |
| abstract_inverted_index.tuning, | 83 |
| abstract_inverted_index.Overall, | 175 |
| abstract_inverted_index.analysis | 193 |
| abstract_inverted_index.applying | 70 |
| abstract_inverted_index.evaluate | 46 |
| abstract_inverted_index.example, | 151 |
| abstract_inverted_index.exhibits | 133 |
| abstract_inverted_index.identify | 141 |
| abstract_inverted_index.language | 8, 73 |
| abstract_inverted_index.learning | 107 |
| abstract_inverted_index.modeling | 158 |
| abstract_inverted_index.negative | 95 |
| abstract_inverted_index.parsing? | 44 |
| abstract_inverted_index.positive | 109, 136 |
| abstract_inverted_index.scaling. | 32 |
| abstract_inverted_index.semantic | 43, 103 |
| abstract_inverted_index.struggle | 14 |
| abstract_inverted_index.suggests | 195 |
| abstract_inverted_index.different | 67 |
| abstract_inverted_index.generally | 91, 114, 155 |
| abstract_inverted_index.learning. | 86 |
| abstract_inverted_index.potential | 127 |
| abstract_inverted_index.promising | 196 |
| abstract_inverted_index.In-context | 106 |
| abstract_inverted_index.Meanwhile, | 19 |
| abstract_inverted_index.directions | 197 |
| abstract_inverted_index.fine-tuned | 119 |
| abstract_inverted_index.highlights | 178 |
| abstract_inverted_index.in-context | 85 |
| abstract_inverted_index.leveraging | 185 |
| abstract_inverted_index.outperform | 123 |
| abstract_inverted_index.parameters | 52 |
| abstract_inverted_index.suggesting | 125 |
| abstract_inverted_index.techniques | 182 |
| abstract_inverted_index.effectively | 184 |
| abstract_inverted_index.fine-tuning | 79, 90 |
| abstract_inverted_index.limitations | 179 |
| abstract_inverted_index.parameters, | 59, 81 |
| abstract_inverted_index.performance | 3 |
| abstract_inverted_index.pre-trained | 7, 72 |
| abstract_inverted_index.considerable | 24 |
| abstract_inverted_index.decoder-only | 54 |
| abstract_inverted_index.evaluations. | 105 |
| abstract_inverted_index.fine-tuning, | 124 |
| abstract_inverted_index.improvements | 25, 128 |
| abstract_inverted_index.outperformed | 115 |
| abstract_inverted_index.overfitting. | 174 |
| abstract_inverted_index.Additionally, | 139 |
| abstract_inverted_index.Prompt-tuning | 121 |
| abstract_inverted_index.compositional | 17, 40, 100, 189 |
| abstract_inverted_index.generalization | 41, 101 |
| abstract_inverted_index.encoder-decoder | 47 |
| abstract_inverted_index.generalization, | 190 |
| abstract_inverted_index.generalization. | 18 |
| abstract_inverted_index.out-of-distribution | 16, 99 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |