Evaluating the Performance of Augmented Reality in Displaying 3D Holographic Models Derived from MR Techniques Article Swipe
Objective: The primary objective of this study is to investigate the performance of augmented reality (AR) in representing and displaying 3D holographic models derived from 3D MR acquisitions. In addition, the existing picture archiving and communication system (PACS) will be examined as well.Methods: A compatible phantom model for the 3.0T standard bore GE MRI scanner was used and fiducial markers set at various known distances were placed on the surface of the model. The distances were measured using a digital caliper, establishing the reference gold standard. Five separate configurations were created using the same phantom model by rearranging the fiducial markers. A set of six total measurements between fiducial markers were made in each configuration: two along the x-direction, two along the y-direction, and two along the z-direction. Four different 3D MR sequences were implemented to scan each configuration. The resulting 3D MR images of each sequence for every configuration were stored as digital imaging and communications in medicine (DICOM) files and sent to PACS. The corresponding six distances were then measured using the built-in PACS ruler tool. Open-source 3D rendering software programs were used to translate the DICOM files into 3D models, which were then loaded onto an AR platform. The 3D models were displayed as holograms and the overlaid distances between the fiducial markers were measured using a physical digital caliper. Since the assumptions for parametric statistical analysis were violated, the nonparametric statistical method was adopted to examine the statistical differences among the three groups (gold standard, PACS, and AR). Results: The results showed no statistically significant difference between AR measurements and gold standard measurements (p = 0.6208). However, a statistically significant difference between PACS measurements and gold standard measurements (p = 0.0118) was present.Conclusion: Distance measurements in AR models derived from MRI scans show no statistically significant difference compared to gold standard measurements. AR can be used to accurately measure distance for surgical planning and clinical use.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://escholarship.org/uc/item/6sm5r3vs
- https://escholarship.org/uc/item/6sm5r3vs
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2948824770
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2948824770Canonical identifier for this work in OpenAlex
- Title
-
Evaluating the Performance of Augmented Reality in Displaying 3D Holographic Models Derived from MR TechniquesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Mau-Chung Frank ChangList of authors in order
- Landing page
-
https://escholarship.org/uc/item/6sm5r3vsPublisher landing page
- PDF URL
-
https://escholarship.org/uc/item/6sm5r3vsDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://escholarship.org/uc/item/6sm5r3vsDirect OA link when available
- Concepts
-
Fiducial marker, Calipers, DICOM, Computer science, Scanner, Imaging phantom, Computer graphics (images), Software, Computer vision, Rendering (computer graphics), 3D modeling, Artificial intelligence, Set (abstract data type), Nuclear medicine, Mathematics, Medicine, Geometry, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2948824770 |
|---|---|
| doi | |
| ids.mag | 2948824770 |
| ids.openalex | https://openalex.org/W2948824770 |
| fwci | |
| type | article |
| title | Evaluating the Performance of Augmented Reality in Displaying 3D Holographic Models Derived from MR Techniques |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10888 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9745000004768372 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Augmented Reality Applications |
| topics[1].id | https://openalex.org/T10916 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9700999855995178 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2746 |
| topics[1].subfield.display_name | Surgery |
| topics[1].display_name | Surgical Simulation and Training |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C173974348 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8894870281219482 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1469893 |
| concepts[0].display_name | Fiducial marker |
| concepts[1].id | https://openalex.org/C186738849 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8717097043991089 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12408 |
| concepts[1].display_name | Calipers |
| concepts[2].id | https://openalex.org/C77331912 |
| concepts[2].level | 2 |
| concepts[2].score | 0.844613790512085 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q81095 |
| concepts[2].display_name | DICOM |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6609736084938049 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2779751349 |
| concepts[4].level | 2 |
| concepts[4].score | 0.646420955657959 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1474480 |
| concepts[4].display_name | Scanner |
| concepts[5].id | https://openalex.org/C104293457 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6303461194038391 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q28324852 |
| concepts[5].display_name | Imaging phantom |
| concepts[6].id | https://openalex.org/C121684516 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5751821398735046 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[6].display_name | Computer graphics (images) |
| concepts[7].id | https://openalex.org/C2777904410 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5213847756385803 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[7].display_name | Software |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.434109628200531 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C205711294 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4307709336280823 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[9].display_name | Rendering (computer graphics) |
| concepts[10].id | https://openalex.org/C2777897806 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42978599667549133 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q568742 |
| concepts[10].display_name | 3D modeling |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.42179208993911743 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C177264268 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4133143424987793 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[12].display_name | Set (abstract data type) |
| concepts[13].id | https://openalex.org/C2989005 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20827782154083252 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[13].display_name | Nuclear medicine |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.17634999752044678 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C71924100 |
| concepts[15].level | 0 |
| concepts[15].score | 0.10138776898384094 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[15].display_name | Medicine |
| concepts[16].id | https://openalex.org/C2524010 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0778457522392273 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[16].display_name | Geometry |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/fiducial-marker |
| keywords[0].score | 0.8894870281219482 |
| keywords[0].display_name | Fiducial marker |
| keywords[1].id | https://openalex.org/keywords/calipers |
| keywords[1].score | 0.8717097043991089 |
| keywords[1].display_name | Calipers |
| keywords[2].id | https://openalex.org/keywords/dicom |
| keywords[2].score | 0.844613790512085 |
| keywords[2].display_name | DICOM |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6609736084938049 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/scanner |
| keywords[4].score | 0.646420955657959 |
| keywords[4].display_name | Scanner |
| keywords[5].id | https://openalex.org/keywords/imaging-phantom |
| keywords[5].score | 0.6303461194038391 |
| keywords[5].display_name | Imaging phantom |
| keywords[6].id | https://openalex.org/keywords/computer-graphics |
| keywords[6].score | 0.5751821398735046 |
| keywords[6].display_name | Computer graphics (images) |
| keywords[7].id | https://openalex.org/keywords/software |
| keywords[7].score | 0.5213847756385803 |
| keywords[7].display_name | Software |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.434109628200531 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/rendering |
| keywords[9].score | 0.4307709336280823 |
| keywords[9].display_name | Rendering (computer graphics) |
| keywords[10].id | https://openalex.org/keywords/3d-modeling |
| keywords[10].score | 0.42978599667549133 |
| keywords[10].display_name | 3D modeling |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.42179208993911743 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/set |
| keywords[12].score | 0.4133143424987793 |
| keywords[12].display_name | Set (abstract data type) |
| keywords[13].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[13].score | 0.20827782154083252 |
| keywords[13].display_name | Nuclear medicine |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.17634999752044678 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/medicine |
| keywords[15].score | 0.10138776898384094 |
| keywords[15].display_name | Medicine |
| keywords[16].id | https://openalex.org/keywords/geometry |
| keywords[16].score | 0.0778457522392273 |
| keywords[16].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:escholarship.org/ark:/13030/qt6sm5r3vs |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400115 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | eScholarship (California Digital Library) |
| locations[0].source.host_organization | https://openalex.org/I2801248553 |
| locations[0].source.host_organization_name | California Digital Library |
| locations[0].source.host_organization_lineage | https://openalex.org/I2801248553 |
| locations[0].license | |
| locations[0].pdf_url | https://escholarship.org/uc/item/6sm5r3vs |
| locations[0].version | submittedVersion |
| locations[0].raw_type | etd |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://escholarship.org/uc/item/6sm5r3vs |
| authorships[0].author.id | https://openalex.org/A5051454330 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2934-9359 |
| authorships[0].author.display_name | Mau-Chung Frank Chang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Frank Chang |
| authorships[0].is_corresponding | True |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://escholarship.org/uc/item/6sm5r3vs |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating the Performance of Augmented Reality in Displaying 3D Holographic Models Derived from MR Techniques |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T10888 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9745000004768372 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Augmented Reality Applications |
| related_works | https://openalex.org/W2417922039, https://openalex.org/W2097690959, https://openalex.org/W2736353427, https://openalex.org/W2071145895, https://openalex.org/W2094913602, https://openalex.org/W3031043601, https://openalex.org/W2106859083, https://openalex.org/W2084888628, https://openalex.org/W2543626469, https://openalex.org/W2073451467, https://openalex.org/W2088195779, https://openalex.org/W58206556, https://openalex.org/W2184878159, https://openalex.org/W3014036990, https://openalex.org/W3096450031, https://openalex.org/W2033506129, https://openalex.org/W2008475665, https://openalex.org/W2035482916, https://openalex.org/W1973705208, https://openalex.org/W2776418853 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:escholarship.org/ark:/13030/qt6sm5r3vs |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400115 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | eScholarship (California Digital Library) |
| best_oa_location.source.host_organization | https://openalex.org/I2801248553 |
| best_oa_location.source.host_organization_name | California Digital Library |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2801248553 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://escholarship.org/uc/item/6sm5r3vs |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | etd |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://escholarship.org/uc/item/6sm5r3vs |
| primary_location.id | pmh:oai:escholarship.org/ark:/13030/qt6sm5r3vs |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400115 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | eScholarship (California Digital Library) |
| primary_location.source.host_organization | https://openalex.org/I2801248553 |
| primary_location.source.host_organization_name | California Digital Library |
| primary_location.source.host_organization_lineage | https://openalex.org/I2801248553 |
| primary_location.license | |
| primary_location.pdf_url | https://escholarship.org/uc/item/6sm5r3vs |
| primary_location.version | submittedVersion |
| primary_location.raw_type | etd |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://escholarship.org/uc/item/6sm5r3vs |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.= | 268, 283 |
| abstract_inverted_index.A | 43, 101 |
| abstract_inverted_index.a | 78, 219, 271 |
| abstract_inverted_index.(p | 267, 282 |
| abstract_inverted_index.3D | 20, 25, 130, 141, 179, 191, 202 |
| abstract_inverted_index.AR | 199, 261, 290, 306 |
| abstract_inverted_index.GE | 52 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.MR | 26, 131, 142 |
| abstract_inverted_index.an | 198 |
| abstract_inverted_index.as | 41, 152, 206 |
| abstract_inverted_index.at | 61 |
| abstract_inverted_index.be | 39, 308 |
| abstract_inverted_index.by | 96 |
| abstract_inverted_index.in | 16, 112, 157, 289 |
| abstract_inverted_index.is | 7 |
| abstract_inverted_index.no | 256, 297 |
| abstract_inverted_index.of | 4, 12, 70, 103, 144 |
| abstract_inverted_index.on | 67 |
| abstract_inverted_index.to | 8, 135, 163, 185, 238, 302, 310 |
| abstract_inverted_index.MRI | 53, 294 |
| abstract_inverted_index.The | 1, 73, 139, 165, 201, 253 |
| abstract_inverted_index.and | 18, 34, 57, 123, 155, 161, 208, 250, 263, 278, 317 |
| abstract_inverted_index.can | 307 |
| abstract_inverted_index.for | 47, 147, 226, 314 |
| abstract_inverted_index.set | 60, 102 |
| abstract_inverted_index.six | 104, 167 |
| abstract_inverted_index.the | 10, 30, 48, 68, 71, 82, 92, 98, 117, 121, 126, 173, 187, 209, 213, 224, 232, 240, 244 |
| abstract_inverted_index.two | 115, 119, 124 |
| abstract_inverted_index.was | 55, 236, 285 |
| abstract_inverted_index.(AR) | 15 |
| abstract_inverted_index.3.0T | 49 |
| abstract_inverted_index.AR). | 251 |
| abstract_inverted_index.Five | 86 |
| abstract_inverted_index.Four | 128 |
| abstract_inverted_index.PACS | 175, 276 |
| abstract_inverted_index.bore | 51 |
| abstract_inverted_index.each | 113, 137, 145 |
| abstract_inverted_index.from | 24, 293 |
| abstract_inverted_index.gold | 84, 264, 279, 303 |
| abstract_inverted_index.into | 190 |
| abstract_inverted_index.made | 111 |
| abstract_inverted_index.onto | 197 |
| abstract_inverted_index.same | 93 |
| abstract_inverted_index.scan | 136 |
| abstract_inverted_index.sent | 162 |
| abstract_inverted_index.show | 296 |
| abstract_inverted_index.then | 170, 195 |
| abstract_inverted_index.this | 5 |
| abstract_inverted_index.use. | 319 |
| abstract_inverted_index.used | 56, 184, 309 |
| abstract_inverted_index.were | 65, 75, 89, 110, 133, 150, 169, 183, 194, 204, 216, 230 |
| abstract_inverted_index.will | 38 |
| abstract_inverted_index.(gold | 247 |
| abstract_inverted_index.DICOM | 188 |
| abstract_inverted_index.PACS, | 249 |
| abstract_inverted_index.PACS. | 164 |
| abstract_inverted_index.Since | 223 |
| abstract_inverted_index.along | 116, 120, 125 |
| abstract_inverted_index.among | 243 |
| abstract_inverted_index.every | 148 |
| abstract_inverted_index.files | 160, 189 |
| abstract_inverted_index.known | 63 |
| abstract_inverted_index.model | 46, 95 |
| abstract_inverted_index.ruler | 176 |
| abstract_inverted_index.scans | 295 |
| abstract_inverted_index.study | 6 |
| abstract_inverted_index.three | 245 |
| abstract_inverted_index.tool. | 177 |
| abstract_inverted_index.total | 105 |
| abstract_inverted_index.using | 77, 91, 172, 218 |
| abstract_inverted_index.which | 193 |
| abstract_inverted_index.(PACS) | 37 |
| abstract_inverted_index.groups | 246 |
| abstract_inverted_index.images | 143 |
| abstract_inverted_index.loaded | 196 |
| abstract_inverted_index.method | 235 |
| abstract_inverted_index.model. | 72 |
| abstract_inverted_index.models | 22, 203, 291 |
| abstract_inverted_index.placed | 66 |
| abstract_inverted_index.showed | 255 |
| abstract_inverted_index.stored | 151 |
| abstract_inverted_index.system | 36 |
| abstract_inverted_index.(DICOM) | 159 |
| abstract_inverted_index.0.0118) | 284 |
| abstract_inverted_index.adopted | 237 |
| abstract_inverted_index.between | 107, 212, 260, 275 |
| abstract_inverted_index.created | 90 |
| abstract_inverted_index.derived | 23, 292 |
| abstract_inverted_index.digital | 79, 153, 221 |
| abstract_inverted_index.examine | 239 |
| abstract_inverted_index.imaging | 154 |
| abstract_inverted_index.markers | 59, 109, 215 |
| abstract_inverted_index.measure | 312 |
| abstract_inverted_index.models, | 192 |
| abstract_inverted_index.phantom | 45, 94 |
| abstract_inverted_index.picture | 32 |
| abstract_inverted_index.primary | 2 |
| abstract_inverted_index.reality | 14 |
| abstract_inverted_index.results | 254 |
| abstract_inverted_index.scanner | 54 |
| abstract_inverted_index.surface | 69 |
| abstract_inverted_index.various | 62 |
| abstract_inverted_index.0.6208). | 269 |
| abstract_inverted_index.Distance | 287 |
| abstract_inverted_index.However, | 270 |
| abstract_inverted_index.Results: | 252 |
| abstract_inverted_index.analysis | 229 |
| abstract_inverted_index.built-in | 174 |
| abstract_inverted_index.caliper, | 80 |
| abstract_inverted_index.caliper. | 222 |
| abstract_inverted_index.clinical | 318 |
| abstract_inverted_index.compared | 301 |
| abstract_inverted_index.distance | 313 |
| abstract_inverted_index.examined | 40 |
| abstract_inverted_index.existing | 31 |
| abstract_inverted_index.fiducial | 58, 99, 108, 214 |
| abstract_inverted_index.markers. | 100 |
| abstract_inverted_index.measured | 76, 171, 217 |
| abstract_inverted_index.medicine | 158 |
| abstract_inverted_index.overlaid | 210 |
| abstract_inverted_index.physical | 220 |
| abstract_inverted_index.planning | 316 |
| abstract_inverted_index.programs | 182 |
| abstract_inverted_index.separate | 87 |
| abstract_inverted_index.sequence | 146 |
| abstract_inverted_index.software | 181 |
| abstract_inverted_index.standard | 50, 265, 280, 304 |
| abstract_inverted_index.surgical | 315 |
| abstract_inverted_index.addition, | 29 |
| abstract_inverted_index.archiving | 33 |
| abstract_inverted_index.augmented | 13 |
| abstract_inverted_index.different | 129 |
| abstract_inverted_index.displayed | 205 |
| abstract_inverted_index.distances | 64, 74, 168, 211 |
| abstract_inverted_index.holograms | 207 |
| abstract_inverted_index.objective | 3 |
| abstract_inverted_index.platform. | 200 |
| abstract_inverted_index.reference | 83 |
| abstract_inverted_index.rendering | 180 |
| abstract_inverted_index.resulting | 140 |
| abstract_inverted_index.sequences | 132 |
| abstract_inverted_index.standard, | 248 |
| abstract_inverted_index.standard. | 85 |
| abstract_inverted_index.translate | 186 |
| abstract_inverted_index.violated, | 231 |
| abstract_inverted_index.Objective: | 0 |
| abstract_inverted_index.accurately | 311 |
| abstract_inverted_index.compatible | 44 |
| abstract_inverted_index.difference | 259, 274, 300 |
| abstract_inverted_index.displaying | 19 |
| abstract_inverted_index.parametric | 227 |
| abstract_inverted_index.Open-source | 178 |
| abstract_inverted_index.assumptions | 225 |
| abstract_inverted_index.differences | 242 |
| abstract_inverted_index.holographic | 21 |
| abstract_inverted_index.implemented | 134 |
| abstract_inverted_index.investigate | 9 |
| abstract_inverted_index.performance | 11 |
| abstract_inverted_index.rearranging | 97 |
| abstract_inverted_index.significant | 258, 273, 299 |
| abstract_inverted_index.statistical | 228, 234, 241 |
| abstract_inverted_index.establishing | 81 |
| abstract_inverted_index.measurements | 106, 262, 266, 277, 281, 288 |
| abstract_inverted_index.representing | 17 |
| abstract_inverted_index.x-direction, | 118 |
| abstract_inverted_index.y-direction, | 122 |
| abstract_inverted_index.z-direction. | 127 |
| abstract_inverted_index.acquisitions. | 27 |
| abstract_inverted_index.communication | 35 |
| abstract_inverted_index.configuration | 149 |
| abstract_inverted_index.corresponding | 166 |
| abstract_inverted_index.measurements. | 305 |
| abstract_inverted_index.nonparametric | 233 |
| abstract_inverted_index.statistically | 257, 272, 298 |
| abstract_inverted_index.well.Methods: | 42 |
| abstract_inverted_index.communications | 156 |
| abstract_inverted_index.configuration. | 138 |
| abstract_inverted_index.configuration: | 114 |
| abstract_inverted_index.configurations | 88 |
| abstract_inverted_index.present.Conclusion: | 286 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5051454330 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile |