Evaluating the relationship between walking and street characteristics based on big data and machine learning analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.cities.2024.105111
The relationship between walking and the built environment is gaining increased attention for promoting sustainable transport and healthy communities. However, while pedestrians engage with the street environment, walkability assessments often overlook human-scale characteristics, focusing mainly on the neighborhood-level. Furthermore, traditional studies on walkability rely on limited and time-bound methods. To address these research gaps and obtain insights into the connection between walking and the built environment, this study utilizes machine learning techniques to scrutinize mobile-app data on pedestrian traffic alongside street characteristics. Tree-based algorithms are deployed to identify the association between walking volume and built environment features at the street-level, spanning distinct time periods. The pedestrian traffic data was gathered in Tel Aviv, Israel, while accounting for seasonal variations, weekdays, and time of day. Examining 20 street-level characteristics across 8000 segments furnishes new insights into the relative significance of various characteristics for walking, as well as street profiles linked to greater vs. lesser pedestrian activity. Notably, time variables emerge as crucial, with street features varying in importance across different time definitions. The study offers implications for decision-makers and urban planners by informing them of pedestrians' behaviors and preferences at the street-level, facilitating more efficient infrastructure investments and supporting planning decisions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.cities.2024.105111
- OA Status
- hybrid
- Cited By
- 18
- References
- 75
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399152568
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399152568Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.cities.2024.105111Digital Object Identifier
- Title
-
Evaluating the relationship between walking and street characteristics based on big data and machine learning analysisWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-30Full publication date if available
- Authors
-
Avital Angel, Achituv Cohen, Trisalyn Nelson, Pnina PlautList of authors in order
- Landing page
-
https://doi.org/10.1016/j.cities.2024.105111Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.cities.2024.105111Direct OA link when available
- Concepts
-
Big data, Data science, Computer science, Artificial intelligence, Machine learning, Psychology, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
18Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
75Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399152568 |
|---|---|
| doi | https://doi.org/10.1016/j.cities.2024.105111 |
| ids.doi | https://doi.org/10.1016/j.cities.2024.105111 |
| ids.openalex | https://openalex.org/W4399152568 |
| fwci | 20.2785436 |
| type | article |
| title | Evaluating the relationship between walking and street characteristics based on big data and machine learning analysis |
| biblio.issue | |
| biblio.volume | 151 |
| biblio.last_page | 105111 |
| biblio.first_page | 105111 |
| topics[0].id | https://openalex.org/T10298 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Urban Transport and Accessibility |
| topics[1].id | https://openalex.org/T11980 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.983299970626831 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Human Mobility and Location-Based Analysis |
| topics[2].id | https://openalex.org/T10370 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9740999937057495 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2213 |
| topics[2].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[2].display_name | Traffic and Road Safety |
| is_xpac | False |
| apc_list.value | 2620 |
| apc_list.currency | USD |
| apc_list.value_usd | 2620 |
| apc_paid.value | 2620 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2620 |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.63947993516922 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C2522767166 |
| concepts[1].level | 1 |
| concepts[1].score | 0.4029098153114319 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[1].display_name | Data science |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.40019044280052185 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3713839650154114 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3707696795463562 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.363375723361969 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.20890235900878906 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.63947993516922 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/data-science |
| keywords[1].score | 0.4029098153114319 |
| keywords[1].display_name | Data science |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.40019044280052185 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3713839650154114 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3707696795463562 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.363375723361969 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.20890235900878906 |
| keywords[6].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1016/j.cities.2024.105111 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S137445289 |
| locations[0].source.issn | 0264-2751, 1873-6084 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0264-2751 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Cities |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cities |
| locations[0].landing_page_url | https://doi.org/10.1016/j.cities.2024.105111 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5058049526 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5005-0100 |
| authorships[0].author.display_name | Avital Angel |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I174306211 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Architecture and Town Planning, Technion–Israel Institute of Technology, Haifa, Israel |
| authorships[0].institutions[0].id | https://openalex.org/I174306211 |
| authorships[0].institutions[0].ror | https://ror.org/03qryx823 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I174306211 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Technion – Israel Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Avital Angel |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Architecture and Town Planning, Technion–Israel Institute of Technology, Haifa, Israel |
| authorships[1].author.id | https://openalex.org/A5042009498 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1357-8296 |
| authorships[1].author.display_name | Achituv Cohen |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I52170813 |
| authorships[1].affiliations[0].raw_affiliation_string | The Department of Civil Engineering, Ariel University, Israel |
| authorships[1].institutions[0].id | https://openalex.org/I52170813 |
| authorships[1].institutions[0].ror | https://ror.org/03nz8qe97 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I52170813 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Ariel University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Achituv Cohen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Department of Civil Engineering, Ariel University, Israel |
| authorships[2].author.id | https://openalex.org/A5047661626 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2537-6971 |
| authorships[2].author.display_name | Trisalyn Nelson |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154570441 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Geography, University of California, Santa Barbara, United States |
| authorships[2].institutions[0].id | https://openalex.org/I154570441 |
| authorships[2].institutions[0].ror | https://ror.org/02t274463 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I154570441 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Santa Barbara |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Trisalyn Nelson |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geography, University of California, Santa Barbara, United States |
| authorships[3].author.id | https://openalex.org/A5003182896 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2711-5639 |
| authorships[3].author.display_name | Pnina Plaut |
| authorships[3].countries | IL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I174306211 |
| authorships[3].affiliations[0].raw_affiliation_string | Faculty of Architecture and Town Planning, Technion–Israel Institute of Technology, Haifa, Israel |
| authorships[3].institutions[0].id | https://openalex.org/I174306211 |
| authorships[3].institutions[0].ror | https://ror.org/03qryx823 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I174306211 |
| authorships[3].institutions[0].country_code | IL |
| authorships[3].institutions[0].display_name | Technion – Israel Institute of Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Pnina Plaut |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Faculty of Architecture and Town Planning, Technion–Israel Institute of Technology, Haifa, Israel |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.cities.2024.105111 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating the relationship between walking and street characteristics based on big data and machine learning analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10298 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Urban Transport and Accessibility |
| related_works | https://openalex.org/W4322629366, https://openalex.org/W2961085424, https://openalex.org/W2808989540, https://openalex.org/W2397053934, https://openalex.org/W4306674287, https://openalex.org/W1039292361, https://openalex.org/W2551093110, https://openalex.org/W2148016376, https://openalex.org/W4237919137, https://openalex.org/W3184179822 |
| cited_by_count | 18 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.cities.2024.105111 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S137445289 |
| best_oa_location.source.issn | 0264-2751, 1873-6084 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0264-2751 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Cities |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cities |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.cities.2024.105111 |
| primary_location.id | doi:10.1016/j.cities.2024.105111 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S137445289 |
| primary_location.source.issn | 0264-2751, 1873-6084 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0264-2751 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Cities |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cities |
| primary_location.landing_page_url | https://doi.org/10.1016/j.cities.2024.105111 |
| publication_date | 2024-05-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2153161693, https://openalex.org/W4386461382, https://openalex.org/W4392612908, https://openalex.org/W2004602140, https://openalex.org/W2040606842, https://openalex.org/W6846893312, https://openalex.org/W2058165696, https://openalex.org/W6769411923, https://openalex.org/W6775208017, https://openalex.org/W6762946150, https://openalex.org/W2302685394, https://openalex.org/W3081332551, https://openalex.org/W2175861104, https://openalex.org/W6946402874, https://openalex.org/W6759347081, https://openalex.org/W2166692930, https://openalex.org/W2115846140, https://openalex.org/W2608294218, https://openalex.org/W2262347795, https://openalex.org/W2163603259, https://openalex.org/W2038094306, https://openalex.org/W1986351906, https://openalex.org/W2170519791, https://openalex.org/W2119616510, https://openalex.org/W6842036119, https://openalex.org/W6795354745, https://openalex.org/W2009262796, https://openalex.org/W6678634339, https://openalex.org/W2113376794, https://openalex.org/W2154096733, https://openalex.org/W3212720777, https://openalex.org/W2068397294, https://openalex.org/W6759989479, https://openalex.org/W2103401543, https://openalex.org/W2890651224, https://openalex.org/W2765166237, https://openalex.org/W6771205591, https://openalex.org/W1011890545, https://openalex.org/W2132668231, https://openalex.org/W2027865188, https://openalex.org/W2015974569, https://openalex.org/W6689893894, https://openalex.org/W2531072308, https://openalex.org/W2097752401, https://openalex.org/W2148161863, https://openalex.org/W3127107039, https://openalex.org/W2800961273, https://openalex.org/W6791467818, https://openalex.org/W1989096081, https://openalex.org/W1978806704, https://openalex.org/W2943541748, https://openalex.org/W1978129485, https://openalex.org/W3088236174, https://openalex.org/W6768822690, https://openalex.org/W6846477591, https://openalex.org/W2604306480, https://openalex.org/W6728675266, https://openalex.org/W1031015364, https://openalex.org/W2522940576, https://openalex.org/W2884238711, https://openalex.org/W2909746114, https://openalex.org/W2947199161, https://openalex.org/W2528628564, https://openalex.org/W2993191387, https://openalex.org/W4292533791, https://openalex.org/W2981237529, https://openalex.org/W3011312272, https://openalex.org/W2917282900, https://openalex.org/W3135862496, https://openalex.org/W2940629028, https://openalex.org/W2915013293, https://openalex.org/W2981425967, https://openalex.org/W4309709556, https://openalex.org/W3160848693, https://openalex.org/W4310914505 |
| referenced_works_count | 75 |
| abstract_inverted_index.20 | 125 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.as | 143, 145, 159 |
| abstract_inverted_index.at | 97, 188 |
| abstract_inverted_index.by | 180 |
| abstract_inverted_index.in | 110, 165 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 122, 138, 183 |
| abstract_inverted_index.on | 35, 41, 44, 76 |
| abstract_inverted_index.to | 72, 86, 149 |
| abstract_inverted_index.Tel | 111 |
| abstract_inverted_index.The | 0, 104, 171 |
| abstract_inverted_index.and | 4, 16, 46, 54, 62, 93, 120, 177, 186, 196 |
| abstract_inverted_index.are | 84 |
| abstract_inverted_index.for | 12, 116, 141, 175 |
| abstract_inverted_index.new | 132 |
| abstract_inverted_index.the | 5, 24, 36, 58, 63, 88, 98, 135, 189 |
| abstract_inverted_index.vs. | 151 |
| abstract_inverted_index.was | 108 |
| abstract_inverted_index.8000 | 129 |
| abstract_inverted_index.data | 75, 107 |
| abstract_inverted_index.day. | 123 |
| abstract_inverted_index.gaps | 53 |
| abstract_inverted_index.into | 57, 134 |
| abstract_inverted_index.more | 192 |
| abstract_inverted_index.rely | 43 |
| abstract_inverted_index.them | 182 |
| abstract_inverted_index.this | 66 |
| abstract_inverted_index.time | 102, 121, 156, 169 |
| abstract_inverted_index.well | 144 |
| abstract_inverted_index.with | 23, 161 |
| abstract_inverted_index.Aviv, | 112 |
| abstract_inverted_index.built | 6, 64, 94 |
| abstract_inverted_index.often | 29 |
| abstract_inverted_index.study | 67, 172 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.urban | 178 |
| abstract_inverted_index.while | 20, 114 |
| abstract_inverted_index.across | 128, 167 |
| abstract_inverted_index.emerge | 158 |
| abstract_inverted_index.engage | 22 |
| abstract_inverted_index.lesser | 152 |
| abstract_inverted_index.linked | 148 |
| abstract_inverted_index.mainly | 34 |
| abstract_inverted_index.obtain | 55 |
| abstract_inverted_index.offers | 173 |
| abstract_inverted_index.street | 25, 80, 146, 162 |
| abstract_inverted_index.volume | 92 |
| abstract_inverted_index.Israel, | 113 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.between | 2, 60, 90 |
| abstract_inverted_index.gaining | 9 |
| abstract_inverted_index.greater | 150 |
| abstract_inverted_index.healthy | 17 |
| abstract_inverted_index.limited | 45 |
| abstract_inverted_index.machine | 69 |
| abstract_inverted_index.studies | 40 |
| abstract_inverted_index.traffic | 78, 106 |
| abstract_inverted_index.various | 139 |
| abstract_inverted_index.varying | 164 |
| abstract_inverted_index.walking | 3, 61, 91 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Notably, | 155 |
| abstract_inverted_index.crucial, | 160 |
| abstract_inverted_index.deployed | 85 |
| abstract_inverted_index.distinct | 101 |
| abstract_inverted_index.features | 96, 163 |
| abstract_inverted_index.focusing | 33 |
| abstract_inverted_index.gathered | 109 |
| abstract_inverted_index.identify | 87 |
| abstract_inverted_index.insights | 56, 133 |
| abstract_inverted_index.learning | 70 |
| abstract_inverted_index.methods. | 48 |
| abstract_inverted_index.overlook | 30 |
| abstract_inverted_index.periods. | 103 |
| abstract_inverted_index.planners | 179 |
| abstract_inverted_index.planning | 198 |
| abstract_inverted_index.profiles | 147 |
| abstract_inverted_index.relative | 136 |
| abstract_inverted_index.research | 52 |
| abstract_inverted_index.seasonal | 117 |
| abstract_inverted_index.segments | 130 |
| abstract_inverted_index.spanning | 100 |
| abstract_inverted_index.utilizes | 68 |
| abstract_inverted_index.walking, | 142 |
| abstract_inverted_index.Examining | 124 |
| abstract_inverted_index.activity. | 154 |
| abstract_inverted_index.alongside | 79 |
| abstract_inverted_index.attention | 11 |
| abstract_inverted_index.behaviors | 185 |
| abstract_inverted_index.different | 168 |
| abstract_inverted_index.efficient | 193 |
| abstract_inverted_index.furnishes | 131 |
| abstract_inverted_index.increased | 10 |
| abstract_inverted_index.informing | 181 |
| abstract_inverted_index.promoting | 13 |
| abstract_inverted_index.transport | 15 |
| abstract_inverted_index.variables | 157 |
| abstract_inverted_index.weekdays, | 119 |
| abstract_inverted_index.Tree-based | 82 |
| abstract_inverted_index.accounting | 115 |
| abstract_inverted_index.algorithms | 83 |
| abstract_inverted_index.connection | 59 |
| abstract_inverted_index.decisions. | 199 |
| abstract_inverted_index.importance | 166 |
| abstract_inverted_index.mobile-app | 74 |
| abstract_inverted_index.pedestrian | 77, 105, 153 |
| abstract_inverted_index.scrutinize | 73 |
| abstract_inverted_index.supporting | 197 |
| abstract_inverted_index.techniques | 71 |
| abstract_inverted_index.time-bound | 47 |
| abstract_inverted_index.assessments | 28 |
| abstract_inverted_index.association | 89 |
| abstract_inverted_index.environment | 7, 95 |
| abstract_inverted_index.human-scale | 31 |
| abstract_inverted_index.investments | 195 |
| abstract_inverted_index.pedestrians | 21 |
| abstract_inverted_index.preferences | 187 |
| abstract_inverted_index.sustainable | 14 |
| abstract_inverted_index.traditional | 39 |
| abstract_inverted_index.variations, | 118 |
| abstract_inverted_index.walkability | 27, 42 |
| abstract_inverted_index.Furthermore, | 38 |
| abstract_inverted_index.communities. | 18 |
| abstract_inverted_index.definitions. | 170 |
| abstract_inverted_index.environment, | 26, 65 |
| abstract_inverted_index.facilitating | 191 |
| abstract_inverted_index.implications | 174 |
| abstract_inverted_index.pedestrians' | 184 |
| abstract_inverted_index.relationship | 1 |
| abstract_inverted_index.significance | 137 |
| abstract_inverted_index.street-level | 126 |
| abstract_inverted_index.street-level, | 99, 190 |
| abstract_inverted_index.infrastructure | 194 |
| abstract_inverted_index.characteristics | 127, 140 |
| abstract_inverted_index.decision-makers | 176 |
| abstract_inverted_index.characteristics, | 32 |
| abstract_inverted_index.characteristics. | 81 |
| abstract_inverted_index.neighborhood-level. | 37 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5058049526 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I174306211 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5600000023841858 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.99265879 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |