Evaluating the sensitivity of mortality attributable to pollution to modeling Choices: A case study for Colorado Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1016/j.envint.2024.108416
We evaluated the sensitivity of estimated PM2.5 and NO2 health impacts to varying key input parameters and assumptions including: 1) the spatial scale at which impacts are estimated, 2) using either a single concentration-response function (CRF) or using racial/ethnic group specific CRFs from the same epidemiologic study, 3) assigning exposure to residents based on home, instead of home and work locations for the state of Colorado. We found that the spatial scale of the analysis influences the magnitude of NO2, but not PM2.5, attributable deaths. Using county-level predictions instead of 1 km2 predictions of NO2 resulted in a lower estimate of mortality attributable to NO2 by ∼ 50 % for all of Colorado for each year between 2000 and 2020. Using an all-population CRF instead of racial/ethnic group specific CRFs results in a 130 % higher estimate of annual mortality attributable for the white population and a 40 % and 80 % lower estimate of mortality attributable to PM2.5 for Black and Hispanic residents, respectively. Using racial/ethnic group specific CRFs did not result in a different estimation of NO2 attributable mortality for white residents, but led to ∼ 50 % lower estimates of mortality for Black residents, and 290 % lower estimate for Hispanic residents. Using NO2 based on home instead of home and workplace locations results in a smaller estimate of annual mortality attributable to NO2 for all of Colorado by 2 % each year and 0.3 % for PM2.5. Our results should be interpreted as an exercise to make methodological recommendations for future health impact assessments of pollution.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.envint.2024.108416
- OA Status
- gold
- Cited By
- 8
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390571548
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390571548Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.envint.2024.108416Digital Object Identifier
- Title
-
Evaluating the sensitivity of mortality attributable to pollution to modeling Choices: A case study for ColoradoWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-03Full publication date if available
- Authors
-
Priyanka deSouza, Susan C. Anenberg, Neal Fann, Lisa M. McKenzie, Elizabeth Chan, Ananya Roy, J. L. Jiménez, William Raich, Henry Roman, Patrick L. KinneyList of authors in order
- Landing page
-
https://doi.org/10.1016/j.envint.2024.108416Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.envint.2024.108416Direct OA link when available
- Concepts
-
Demography, Ethnic group, Medicine, Population, Estimation, Attributable risk, Geography, Environmental health, Statistics, Gerontology, Mathematics, Anthropology, Management, Sociology, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390571548 |
|---|---|
| doi | https://doi.org/10.1016/j.envint.2024.108416 |
| ids.doi | https://doi.org/10.1016/j.envint.2024.108416 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38394913 |
| ids.openalex | https://openalex.org/W4390571548 |
| fwci | 5.19378215 |
| mesh[0].qualifier_ui | Q000009 |
| mesh[0].descriptor_ui | D000393 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | adverse effects |
| mesh[0].descriptor_name | Air Pollutants |
| mesh[1].qualifier_ui | Q000032 |
| mesh[1].descriptor_ui | D000393 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | analysis |
| mesh[1].descriptor_name | Air Pollutants |
| mesh[2].qualifier_ui | Q000009 |
| mesh[2].descriptor_ui | D000397 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | adverse effects |
| mesh[2].descriptor_name | Air Pollution |
| mesh[3].qualifier_ui | Q000032 |
| mesh[3].descriptor_ui | D000397 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | analysis |
| mesh[3].descriptor_name | Air Pollution |
| mesh[4].qualifier_ui | Q000009 |
| mesh[4].descriptor_ui | D052638 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | adverse effects |
| mesh[4].descriptor_name | Particulate Matter |
| mesh[5].qualifier_ui | Q000032 |
| mesh[5].descriptor_ui | D052638 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | analysis |
| mesh[5].descriptor_name | Particulate Matter |
| mesh[6].qualifier_ui | Q000453 |
| mesh[6].descriptor_ui | D003120 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | epidemiology |
| mesh[6].descriptor_name | Colorado |
| mesh[7].qualifier_ui | Q000032 |
| mesh[7].descriptor_ui | D009585 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | analysis |
| mesh[7].descriptor_name | Nitrogen Dioxide |
| mesh[8].qualifier_ui | Q000009 |
| mesh[8].descriptor_ui | D004781 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | adverse effects |
| mesh[8].descriptor_name | Environmental Exposure |
| mesh[9].qualifier_ui | Q000032 |
| mesh[9].descriptor_ui | D004781 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | analysis |
| mesh[9].descriptor_name | Environmental Exposure |
| mesh[10].qualifier_ui | Q000009 |
| mesh[10].descriptor_ui | D000393 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | adverse effects |
| mesh[10].descriptor_name | Air Pollutants |
| mesh[11].qualifier_ui | Q000032 |
| mesh[11].descriptor_ui | D000393 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | analysis |
| mesh[11].descriptor_name | Air Pollutants |
| mesh[12].qualifier_ui | Q000009 |
| mesh[12].descriptor_ui | D000397 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | adverse effects |
| mesh[12].descriptor_name | Air Pollution |
| mesh[13].qualifier_ui | Q000032 |
| mesh[13].descriptor_ui | D000397 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | analysis |
| mesh[13].descriptor_name | Air Pollution |
| mesh[14].qualifier_ui | Q000009 |
| mesh[14].descriptor_ui | D052638 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | adverse effects |
| mesh[14].descriptor_name | Particulate Matter |
| mesh[15].qualifier_ui | Q000032 |
| mesh[15].descriptor_ui | D052638 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | analysis |
| mesh[15].descriptor_name | Particulate Matter |
| mesh[16].qualifier_ui | Q000453 |
| mesh[16].descriptor_ui | D003120 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | epidemiology |
| mesh[16].descriptor_name | Colorado |
| mesh[17].qualifier_ui | Q000032 |
| mesh[17].descriptor_ui | D009585 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | analysis |
| mesh[17].descriptor_name | Nitrogen Dioxide |
| mesh[18].qualifier_ui | Q000009 |
| mesh[18].descriptor_ui | D004781 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | adverse effects |
| mesh[18].descriptor_name | Environmental Exposure |
| mesh[19].qualifier_ui | Q000032 |
| mesh[19].descriptor_ui | D004781 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | analysis |
| mesh[19].descriptor_name | Environmental Exposure |
| type | article |
| title | Evaluating the sensitivity of mortality attributable to pollution to modeling Choices: A case study for Colorado |
| biblio.issue | |
| biblio.volume | 185 |
| biblio.last_page | 108416 |
| biblio.first_page | 108416 |
| topics[0].id | https://openalex.org/T10190 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2307 |
| topics[0].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[0].display_name | Air Quality and Health Impacts |
| topics[1].id | https://openalex.org/T11244 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Climate Change and Health Impacts |
| topics[2].id | https://openalex.org/T10235 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9889000058174133 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3306 |
| topics[2].subfield.display_name | Health |
| topics[2].display_name | Health disparities and outcomes |
| is_xpac | False |
| apc_list.value | 3500 |
| apc_list.currency | USD |
| apc_list.value_usd | 3500 |
| apc_paid.value | 3500 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3500 |
| concepts[0].id | https://openalex.org/C149923435 |
| concepts[0].level | 1 |
| concepts[0].score | 0.71354079246521 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[0].display_name | Demography |
| concepts[1].id | https://openalex.org/C137403100 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5562129020690918 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q41710 |
| concepts[1].display_name | Ethnic group |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5547468066215515 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C2908647359 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5512873530387878 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[3].display_name | Population |
| concepts[4].id | https://openalex.org/C96250715 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5328894853591919 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[4].display_name | Estimation |
| concepts[5].id | https://openalex.org/C16851059 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4872933626174927 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q182467 |
| concepts[5].display_name | Attributable risk |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4802582561969757 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C99454951 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4366218149662018 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[7].display_name | Environmental health |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3537554144859314 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C74909509 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3438069522380829 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10387 |
| concepts[9].display_name | Gerontology |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.1166887879371643 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C19165224 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[11].display_name | Anthropology |
| concepts[12].id | https://openalex.org/C187736073 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[12].display_name | Management |
| concepts[13].id | https://openalex.org/C144024400 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[13].display_name | Sociology |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/demography |
| keywords[0].score | 0.71354079246521 |
| keywords[0].display_name | Demography |
| keywords[1].id | https://openalex.org/keywords/ethnic-group |
| keywords[1].score | 0.5562129020690918 |
| keywords[1].display_name | Ethnic group |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.5547468066215515 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/population |
| keywords[3].score | 0.5512873530387878 |
| keywords[3].display_name | Population |
| keywords[4].id | https://openalex.org/keywords/estimation |
| keywords[4].score | 0.5328894853591919 |
| keywords[4].display_name | Estimation |
| keywords[5].id | https://openalex.org/keywords/attributable-risk |
| keywords[5].score | 0.4872933626174927 |
| keywords[5].display_name | Attributable risk |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.4802582561969757 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/environmental-health |
| keywords[7].score | 0.4366218149662018 |
| keywords[7].display_name | Environmental health |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3537554144859314 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/gerontology |
| keywords[9].score | 0.3438069522380829 |
| keywords[9].display_name | Gerontology |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.1166887879371643 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.envint.2024.108416 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S143381477 |
| locations[0].source.issn | 0160-4120, 1873-6750 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0160-4120 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Environment International |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Environment International |
| locations[0].landing_page_url | https://doi.org/10.1016/j.envint.2024.108416 |
| locations[1].id | pmid:38394913 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Environment international |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38394913 |
| locations[2].id | pmh:oai:doaj.org/article:5036adb5642a481f9c1b7bf18adfda16 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Environment International, Vol 185, Iss , Pp 108416- (2024) |
| locations[2].landing_page_url | https://doaj.org/article/5036adb5642a481f9c1b7bf18adfda16 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5065161673 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2618-4050 |
| authorships[0].author.display_name | Priyanka deSouza |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[0].affiliations[0].raw_affiliation_string | Senseable City Lab, Massachusetts Institute of Technology, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I188538660 |
| authorships[0].affiliations[1].raw_affiliation_string | CU Population Center, University of Colorado Boulder, CO, USA |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I131651094, https://openalex.org/I921990950 |
| authorships[0].affiliations[2].raw_affiliation_string | Department of Urban and Regional Planning, University of Colorado Denver, Denver, CO, USA |
| authorships[0].institutions[0].id | https://openalex.org/I63966007 |
| authorships[0].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[0].institutions[1].id | https://openalex.org/I188538660 |
| authorships[0].institutions[1].ror | https://ror.org/02ttsq026 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I188538660 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | University of Colorado Boulder |
| authorships[0].institutions[2].id | https://openalex.org/I921990950 |
| authorships[0].institutions[2].ror | https://ror.org/02hh7en24 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I921990950 |
| authorships[0].institutions[2].country_code | US |
| authorships[0].institutions[2].display_name | University of Colorado Denver |
| authorships[0].institutions[3].id | https://openalex.org/I131651094 |
| authorships[0].institutions[3].ror | https://ror.org/04w7skc03 |
| authorships[0].institutions[3].type | education |
| authorships[0].institutions[3].lineage | https://openalex.org/I131651094 |
| authorships[0].institutions[3].country_code | US |
| authorships[0].institutions[3].display_name | University of Denver |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Priyanka N. deSouza |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | CU Population Center, University of Colorado Boulder, CO, USA, Department of Urban and Regional Planning, University of Colorado Denver, Denver, CO, USA, Senseable City Lab, Massachusetts Institute of Technology, USA |
| authorships[1].author.id | https://openalex.org/A5040125395 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9668-603X |
| authorships[1].author.display_name | Susan C. Anenberg |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1302991022, https://openalex.org/I193531525 |
| authorships[1].affiliations[0].raw_affiliation_string | Milken Institute School of Public Health, George Washington University, Washington D.C. USA |
| authorships[1].institutions[0].id | https://openalex.org/I193531525 |
| authorships[1].institutions[0].ror | https://ror.org/00y4zzh67 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I193531525 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | George Washington University |
| authorships[1].institutions[1].id | https://openalex.org/I1302991022 |
| authorships[1].institutions[1].ror | https://ror.org/03f5t6469 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I1302991022 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | Milken Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Susan Anenberg |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Milken Institute School of Public Health, George Washington University, Washington D.C. USA |
| authorships[2].author.id | https://openalex.org/A5045872039 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6724-8575 |
| authorships[2].author.display_name | Neal Fann |
| authorships[2].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Neal Fann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | U.S. Environmental Protection Agency |
| authorships[3].author.id | https://openalex.org/A5071816159 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4455-581X |
| authorships[3].author.display_name | Lisa M. McKenzie |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I151808059 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz, Aurora, CO, USA |
| authorships[3].institutions[0].id | https://openalex.org/I151808059 |
| authorships[3].institutions[0].ror | https://ror.org/005x9g035 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I151808059 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Colorado School of Public Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lisa M. McKenzie |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz, Aurora, CO, USA |
| authorships[4].author.id | https://openalex.org/A5008639269 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5602-9991 |
| authorships[4].author.display_name | Elizabeth Chan |
| authorships[4].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Elizabeth Chan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | U.S. Environmental Protection Agency |
| authorships[5].author.id | https://openalex.org/A5034406137 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0706-3237 |
| authorships[5].author.display_name | Ananya Roy |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1298723799 |
| authorships[5].affiliations[0].raw_affiliation_string | Environmental Defense Fund, NY, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1298723799 |
| authorships[5].institutions[0].ror | https://ror.org/02tj7r959 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I1298723799 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Environmental Defense Fund |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ananya Roy |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Environmental Defense Fund, NY, USA |
| authorships[6].author.id | https://openalex.org/A5081595136 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6203-1847 |
| authorships[6].author.display_name | J. L. Jiménez |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I161675122, https://openalex.org/I188538660 |
| authorships[6].affiliations[0].raw_affiliation_string | Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I188538660 |
| authorships[6].affiliations[1].raw_affiliation_string | Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA |
| authorships[6].institutions[0].id | https://openalex.org/I161675122 |
| authorships[6].institutions[0].ror | https://ror.org/00bdqav06 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1308126019, https://openalex.org/I1343035065, https://openalex.org/I161675122, https://openalex.org/I188538660, https://openalex.org/I2802992173 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Cooperative Institute for Research in Environmental Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I188538660 |
| authorships[6].institutions[1].ror | https://ror.org/02ttsq026 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I188538660 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | University of Colorado Boulder |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jose L. Jimenez |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA, Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA |
| authorships[7].author.id | https://openalex.org/A5082095514 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6228-0739 |
| authorships[7].author.display_name | William Raich |
| authorships[7].affiliations[0].raw_affiliation_string | Industrial Economics, Boston, MA, USA |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | William Raich |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Industrial Economics, Boston, MA, USA |
| authorships[8].author.id | https://openalex.org/A5027162586 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-0660-8012 |
| authorships[8].author.display_name | Henry Roman |
| authorships[8].affiliations[0].raw_affiliation_string | Industrial Economics, Boston, MA, USA |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Henry Roman |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Industrial Economics, Boston, MA, USA |
| authorships[9].author.id | https://openalex.org/A5057454836 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2801-1003 |
| authorships[9].author.display_name | Patrick L. Kinney |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I111088046 |
| authorships[9].affiliations[0].raw_affiliation_string | Boston University School of Public Health, MA, USA |
| authorships[9].institutions[0].id | https://openalex.org/I111088046 |
| authorships[9].institutions[0].ror | https://ror.org/05qwgg493 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I111088046 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Boston University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Patrick L. Kinney |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Boston University School of Public Health, MA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.envint.2024.108416 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluating the sensitivity of mortality attributable to pollution to modeling Choices: A case study for Colorado |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10190 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2307 |
| primary_topic.subfield.display_name | Health, Toxicology and Mutagenesis |
| primary_topic.display_name | Air Quality and Health Impacts |
| related_works | https://openalex.org/W2381483116, https://openalex.org/W2348506863, https://openalex.org/W2371917728, https://openalex.org/W2007982614, https://openalex.org/W2389579140, https://openalex.org/W2113257626, https://openalex.org/W2512568326, https://openalex.org/W2808021644, https://openalex.org/W1984243130, https://openalex.org/W3135866971 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.envint.2024.108416 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S143381477 |
| best_oa_location.source.issn | 0160-4120, 1873-6750 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0160-4120 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Environment International |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Environment International |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.envint.2024.108416 |
| primary_location.id | doi:10.1016/j.envint.2024.108416 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S143381477 |
| primary_location.source.issn | 0160-4120, 1873-6750 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0160-4120 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Environment International |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Environment International |
| primary_location.landing_page_url | https://doi.org/10.1016/j.envint.2024.108416 |
| publication_date | 2024-01-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4205987201, https://openalex.org/W2621121878, https://openalex.org/W2802308221, https://openalex.org/W3043302251, https://openalex.org/W4282923396, https://openalex.org/W3156141348, https://openalex.org/W2300151471, https://openalex.org/W3045551250, https://openalex.org/W3091665423, https://openalex.org/W3025703669, https://openalex.org/W4295957428, https://openalex.org/W4205263916, https://openalex.org/W4390339010, https://openalex.org/W4311125320, https://openalex.org/W2725857760, https://openalex.org/W3207730534, https://openalex.org/W2037851601, https://openalex.org/W2886087828, https://openalex.org/W2770861823, https://openalex.org/W3030103373, https://openalex.org/W3091831225, https://openalex.org/W2066015033, https://openalex.org/W2792647660, https://openalex.org/W6801855304, https://openalex.org/W4360805036, https://openalex.org/W2552764727, https://openalex.org/W2161333708, https://openalex.org/W2616584304, https://openalex.org/W2029401079, https://openalex.org/W2080740827, https://openalex.org/W3004670883, https://openalex.org/W2102494515, https://openalex.org/W6846136784, https://openalex.org/W3145606882, https://openalex.org/W4200166414, https://openalex.org/W3014923306, https://openalex.org/W2972481041, https://openalex.org/W2209260785, https://openalex.org/W3159463026, https://openalex.org/W3095961138, https://openalex.org/W337533846, https://openalex.org/W4200611685, https://openalex.org/W3202205457, https://openalex.org/W4306726708 |
| referenced_works_count | 44 |
| abstract_inverted_index.% | 108, 134, 148, 151, 189, 199, 233, 238 |
| abstract_inverted_index.1 | 90 |
| abstract_inverted_index.2 | 232 |
| abstract_inverted_index.a | 31, 97, 132, 146, 174, 218 |
| abstract_inverted_index.1) | 19 |
| abstract_inverted_index.2) | 28 |
| abstract_inverted_index.3) | 47 |
| abstract_inverted_index.40 | 147 |
| abstract_inverted_index.50 | 107, 188 |
| abstract_inverted_index.80 | 150 |
| abstract_inverted_index.We | 0, 66 |
| abstract_inverted_index.an | 121, 247 |
| abstract_inverted_index.as | 246 |
| abstract_inverted_index.at | 23 |
| abstract_inverted_index.be | 244 |
| abstract_inverted_index.by | 105, 231 |
| abstract_inverted_index.in | 96, 131, 173, 217 |
| abstract_inverted_index.of | 4, 56, 64, 72, 78, 89, 93, 100, 111, 125, 137, 154, 177, 192, 211, 221, 229, 258 |
| abstract_inverted_index.on | 53, 208 |
| abstract_inverted_index.or | 36 |
| abstract_inverted_index.to | 11, 50, 103, 157, 186, 225, 249 |
| abstract_inverted_index.0.3 | 237 |
| abstract_inverted_index.130 | 133 |
| abstract_inverted_index.290 | 198 |
| abstract_inverted_index.CRF | 123 |
| abstract_inverted_index.Our | 241 |
| abstract_inverted_index.all | 110, 228 |
| abstract_inverted_index.and | 7, 16, 58, 118, 145, 149, 161, 197, 213, 236 |
| abstract_inverted_index.are | 26 |
| abstract_inverted_index.but | 80, 184 |
| abstract_inverted_index.did | 170 |
| abstract_inverted_index.for | 61, 109, 113, 141, 159, 181, 194, 202, 227, 239, 253 |
| abstract_inverted_index.key | 13 |
| abstract_inverted_index.led | 185 |
| abstract_inverted_index.not | 81, 171 |
| abstract_inverted_index.the | 2, 20, 43, 62, 69, 73, 76, 142 |
| abstract_inverted_index.∼ | 106, 187 |
| abstract_inverted_index.2000 | 117 |
| abstract_inverted_index.CRFs | 41, 129, 169 |
| abstract_inverted_index.each | 114, 234 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.home | 57, 209, 212 |
| abstract_inverted_index.make | 250 |
| abstract_inverted_index.same | 44 |
| abstract_inverted_index.that | 68 |
| abstract_inverted_index.work | 59 |
| abstract_inverted_index.year | 115, 235 |
| abstract_inverted_index.(CRF) | 35 |
| abstract_inverted_index.2020. | 119 |
| abstract_inverted_index.Black | 160, 195 |
| abstract_inverted_index.Using | 85, 120, 165, 205 |
| abstract_inverted_index.based | 52, 207 |
| abstract_inverted_index.found | 67 |
| abstract_inverted_index.group | 39, 127, 167 |
| abstract_inverted_index.home, | 54 |
| abstract_inverted_index.input | 14 |
| abstract_inverted_index.lower | 98, 152, 190, 200 |
| abstract_inverted_index.scale | 22, 71 |
| abstract_inverted_index.state | 63 |
| abstract_inverted_index.using | 29, 37 |
| abstract_inverted_index.which | 24 |
| abstract_inverted_index.white | 143, 182 |
| abstract_inverted_index.annual | 138, 222 |
| abstract_inverted_index.either | 30 |
| abstract_inverted_index.future | 254 |
| abstract_inverted_index.health | 9, 255 |
| abstract_inverted_index.higher | 135 |
| abstract_inverted_index.impact | 256 |
| abstract_inverted_index.result | 172 |
| abstract_inverted_index.should | 243 |
| abstract_inverted_index.single | 32 |
| abstract_inverted_index.study, | 46 |
| abstract_inverted_index.between | 116 |
| abstract_inverted_index.deaths. | 84 |
| abstract_inverted_index.impacts | 10, 25 |
| abstract_inverted_index.instead | 55, 88, 124, 210 |
| abstract_inverted_index.results | 130, 216, 242 |
| abstract_inverted_index.smaller | 219 |
| abstract_inverted_index.spatial | 21, 70 |
| abstract_inverted_index.varying | 12 |
| abstract_inverted_index.Colorado | 112, 230 |
| abstract_inverted_index.Hispanic | 162, 203 |
| abstract_inverted_index.analysis | 74 |
| abstract_inverted_index.estimate | 99, 136, 153, 201, 220 |
| abstract_inverted_index.exercise | 248 |
| abstract_inverted_index.exposure | 49 |
| abstract_inverted_index.function | 34 |
| abstract_inverted_index.resulted | 95 |
| abstract_inverted_index.specific | 40, 128, 168 |
| abstract_inverted_index.Colorado. | 65 |
| abstract_inverted_index.assigning | 48 |
| abstract_inverted_index.different | 175 |
| abstract_inverted_index.estimated | 5 |
| abstract_inverted_index.estimates | 191 |
| abstract_inverted_index.evaluated | 1 |
| abstract_inverted_index.locations | 60, 215 |
| abstract_inverted_index.magnitude | 77 |
| abstract_inverted_index.mortality | 101, 139, 155, 180, 193, 223 |
| abstract_inverted_index.residents | 51 |
| abstract_inverted_index.workplace | 214 |
| abstract_inverted_index.estimated, | 27 |
| abstract_inverted_index.estimation | 176 |
| abstract_inverted_index.including: | 18 |
| abstract_inverted_index.influences | 75 |
| abstract_inverted_index.parameters | 15 |
| abstract_inverted_index.pollution. | 259 |
| abstract_inverted_index.population | 144 |
| abstract_inverted_index.residents, | 163, 183, 196 |
| abstract_inverted_index.residents. | 204 |
| abstract_inverted_index.assessments | 257 |
| abstract_inverted_index.assumptions | 17 |
| abstract_inverted_index.interpreted | 245 |
| abstract_inverted_index.predictions | 87, 92 |
| abstract_inverted_index.sensitivity | 3 |
| abstract_inverted_index.attributable | 83, 102, 140, 156, 179, 224 |
| abstract_inverted_index.county-level | 86 |
| abstract_inverted_index.epidemiologic | 45 |
| abstract_inverted_index.racial/ethnic | 38, 126, 166 |
| abstract_inverted_index.respectively. | 164 |
| abstract_inverted_index.NO<sub>2</sub> | 8, 94, 104, 178, 206, 226 |
| abstract_inverted_index.all-population | 122 |
| abstract_inverted_index.km<sup>2</sup> | 91 |
| abstract_inverted_index.methodological | 251 |
| abstract_inverted_index.NO<sub>2</sub>, | 79 |
| abstract_inverted_index.recommendations | 252 |
| abstract_inverted_index.PM<sub>2.5</sub> | 6, 158 |
| abstract_inverted_index.PM<sub>2.5</sub>, | 82 |
| abstract_inverted_index.PM<sub>2.5</sub>. | 240 |
| abstract_inverted_index.concentration-response | 33 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5065161673 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I131651094, https://openalex.org/I188538660, https://openalex.org/I63966007, https://openalex.org/I921990950 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8799999952316284 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.90856186 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |