Evaluating Uncertainties in Electricity Markets via Machine Learning and Quantum Computing Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.16404
The analysis of decision-making process in electricity markets is crucial for understanding and resolving issues related to market manipulation and reduced social welfare. Traditional Multi-Agent Reinforcement Learning (MARL) method can model decision-making of generation companies (GENCOs), but faces challenges due to uncertainties in policy functions, reward functions, and inter-agent interactions. Quantum computing offers a promising solution to resolve these uncertainties, and this paper introduces the Quantum Multi-Agent Deep Q-Network (Q-MADQN) method, which integrates variational quantum circuits into the traditional MARL framework. The main contributions of the paper are: identifying the correspondence between market uncertainties and quantum properties, proposing the Q-MADQN algorithm for simulating electricity market bidding, and demonstrating that Q-MADQN allows for a more thorough exploration and simulates more potential bidding strategies of profit-oriented GENCOs, compared to conventional methods, without compromising computational efficiency. The proposed method is illustrated on IEEE 30-bus test network, confirming that it offers a more accurate model for simulating complex market dynamics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.16404
- https://arxiv.org/pdf/2407.16404
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406073908
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406073908Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.16404Digital Object Identifier
- Title
-
Evaluating Uncertainties in Electricity Markets via Machine Learning and Quantum ComputingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-23Full publication date if available
- Authors
-
Shuyang Zhu, Ziqing Zhu, Linghua Zhu, Yujian Ye, Siqi Bu, Sasa DjokicList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.16404Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.16404Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.16404Direct OA link when available
- Concepts
-
Electricity, Computer science, Quantum, Electricity system, Artificial intelligence, Machine learning, Electrical engineering, Engineering, Electricity generation, Physics, Quantum mechanics, Power (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406073908 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.16404 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.16404 |
| ids.openalex | https://openalex.org/W4406073908 |
| fwci | |
| type | preprint |
| title | Evaluating Uncertainties in Electricity Markets via Machine Learning and Quantum Computing |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11052 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9807999730110168 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Energy Load and Power Forecasting |
| topics[1].id | https://openalex.org/T13429 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9498999714851379 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electricity Theft Detection Techniques |
| topics[2].id | https://openalex.org/T10424 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.921500027179718 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electric Power System Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C206658404 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6695809364318848 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12725 |
| concepts[0].display_name | Electricity |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5424661040306091 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C84114770 |
| concepts[2].level | 2 |
| concepts[2].score | 0.46337834000587463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q46344 |
| concepts[2].display_name | Quantum |
| concepts[3].id | https://openalex.org/C2992120494 |
| concepts[3].level | 4 |
| concepts[3].score | 0.41818565130233765 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q27137 |
| concepts[3].display_name | Electricity system |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3893166184425354 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C119857082 |
| concepts[5].level | 1 |
| concepts[5].score | 0.346704363822937 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[5].display_name | Machine learning |
| concepts[6].id | https://openalex.org/C119599485 |
| concepts[6].level | 1 |
| concepts[6].score | 0.17621415853500366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[6].display_name | Electrical engineering |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.16907444596290588 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C423512 |
| concepts[8].level | 3 |
| concepts[8].score | 0.13128411769866943 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q383973 |
| concepts[8].display_name | Electricity generation |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13126596808433533 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C62520636 |
| concepts[10].level | 1 |
| concepts[10].score | 0.060107022523880005 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[10].display_name | Quantum mechanics |
| concepts[11].id | https://openalex.org/C163258240 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[11].display_name | Power (physics) |
| keywords[0].id | https://openalex.org/keywords/electricity |
| keywords[0].score | 0.6695809364318848 |
| keywords[0].display_name | Electricity |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5424661040306091 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/quantum |
| keywords[2].score | 0.46337834000587463 |
| keywords[2].display_name | Quantum |
| keywords[3].id | https://openalex.org/keywords/electricity-system |
| keywords[3].score | 0.41818565130233765 |
| keywords[3].display_name | Electricity system |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3893166184425354 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/machine-learning |
| keywords[5].score | 0.346704363822937 |
| keywords[5].display_name | Machine learning |
| keywords[6].id | https://openalex.org/keywords/electrical-engineering |
| keywords[6].score | 0.17621415853500366 |
| keywords[6].display_name | Electrical engineering |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.16907444596290588 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/electricity-generation |
| keywords[8].score | 0.13128411769866943 |
| keywords[8].display_name | Electricity generation |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.13126596808433533 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[10].score | 0.060107022523880005 |
| keywords[10].display_name | Quantum mechanics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.16404 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.16404 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.16404 |
| locations[1].id | doi:10.48550/arxiv.2407.16404 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.16404 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5057589163 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9999-6762 |
| authorships[0].author.display_name | Shuyang Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Shuyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5109299702 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ziqing Zhu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhu, Ziqing |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5077830619 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4860-8982 |
| authorships[2].author.display_name | Linghua Zhu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhu, Linghua |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5044155484 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9278-9218 |
| authorships[3].author.display_name | Yujian Ye |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ye, Yujian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086445784 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1047-2568 |
| authorships[4].author.display_name | Siqi Bu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bu, Siqi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5057974305 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1980-1329 |
| authorships[5].author.display_name | Sasa Djokic |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Djokic, Sasa Z. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.16404 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-05T00:00:00 |
| display_name | Evaluating Uncertainties in Electricity Markets via Machine Learning and Quantum Computing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11052 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9807999730110168 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Energy Load and Power Forecasting |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W3046775127, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.16404 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.16404 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.16404 |
| primary_location.id | pmh:oai:arXiv.org:2407.16404 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.16404 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.16404 |
| publication_date | 2024-07-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 53, 112, 147 |
| abstract_inverted_index.in | 5, 42 |
| abstract_inverted_index.is | 8, 136 |
| abstract_inverted_index.it | 145 |
| abstract_inverted_index.of | 2, 32, 84, 122 |
| abstract_inverted_index.on | 138 |
| abstract_inverted_index.to | 16, 40, 56, 126 |
| abstract_inverted_index.The | 0, 81, 133 |
| abstract_inverted_index.and | 12, 19, 47, 60, 94, 106, 116 |
| abstract_inverted_index.but | 36 |
| abstract_inverted_index.can | 29 |
| abstract_inverted_index.due | 39 |
| abstract_inverted_index.for | 10, 101, 111, 151 |
| abstract_inverted_index.the | 64, 77, 85, 89, 98 |
| abstract_inverted_index.Deep | 67 |
| abstract_inverted_index.IEEE | 139 |
| abstract_inverted_index.MARL | 79 |
| abstract_inverted_index.are: | 87 |
| abstract_inverted_index.into | 76 |
| abstract_inverted_index.main | 82 |
| abstract_inverted_index.more | 113, 118, 148 |
| abstract_inverted_index.test | 141 |
| abstract_inverted_index.that | 108, 144 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.faces | 37 |
| abstract_inverted_index.model | 30, 150 |
| abstract_inverted_index.paper | 62, 86 |
| abstract_inverted_index.these | 58 |
| abstract_inverted_index.which | 71 |
| abstract_inverted_index.(MARL) | 27 |
| abstract_inverted_index.30-bus | 140 |
| abstract_inverted_index.allows | 110 |
| abstract_inverted_index.issues | 14 |
| abstract_inverted_index.market | 17, 92, 104, 154 |
| abstract_inverted_index.method | 28, 135 |
| abstract_inverted_index.offers | 52, 146 |
| abstract_inverted_index.policy | 43 |
| abstract_inverted_index.reward | 45 |
| abstract_inverted_index.social | 21 |
| abstract_inverted_index.GENCOs, | 124 |
| abstract_inverted_index.Q-MADQN | 99, 109 |
| abstract_inverted_index.Quantum | 50, 65 |
| abstract_inverted_index.between | 91 |
| abstract_inverted_index.bidding | 120 |
| abstract_inverted_index.complex | 153 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.markets | 7 |
| abstract_inverted_index.method, | 70 |
| abstract_inverted_index.process | 4 |
| abstract_inverted_index.quantum | 74, 95 |
| abstract_inverted_index.reduced | 20 |
| abstract_inverted_index.related | 15 |
| abstract_inverted_index.resolve | 57 |
| abstract_inverted_index.without | 129 |
| abstract_inverted_index.Learning | 26 |
| abstract_inverted_index.accurate | 149 |
| abstract_inverted_index.analysis | 1 |
| abstract_inverted_index.bidding, | 105 |
| abstract_inverted_index.circuits | 75 |
| abstract_inverted_index.compared | 125 |
| abstract_inverted_index.methods, | 128 |
| abstract_inverted_index.network, | 142 |
| abstract_inverted_index.proposed | 134 |
| abstract_inverted_index.solution | 55 |
| abstract_inverted_index.thorough | 114 |
| abstract_inverted_index.welfare. | 22 |
| abstract_inverted_index.(GENCOs), | 35 |
| abstract_inverted_index.(Q-MADQN) | 69 |
| abstract_inverted_index.Q-Network | 68 |
| abstract_inverted_index.algorithm | 100 |
| abstract_inverted_index.companies | 34 |
| abstract_inverted_index.computing | 51 |
| abstract_inverted_index.dynamics. | 155 |
| abstract_inverted_index.potential | 119 |
| abstract_inverted_index.promising | 54 |
| abstract_inverted_index.proposing | 97 |
| abstract_inverted_index.resolving | 13 |
| abstract_inverted_index.simulates | 117 |
| abstract_inverted_index.challenges | 38 |
| abstract_inverted_index.confirming | 143 |
| abstract_inverted_index.framework. | 80 |
| abstract_inverted_index.functions, | 44, 46 |
| abstract_inverted_index.generation | 33 |
| abstract_inverted_index.integrates | 72 |
| abstract_inverted_index.introduces | 63 |
| abstract_inverted_index.simulating | 102, 152 |
| abstract_inverted_index.strategies | 121 |
| abstract_inverted_index.Multi-Agent | 24, 66 |
| abstract_inverted_index.Traditional | 23 |
| abstract_inverted_index.efficiency. | 132 |
| abstract_inverted_index.electricity | 6, 103 |
| abstract_inverted_index.exploration | 115 |
| abstract_inverted_index.identifying | 88 |
| abstract_inverted_index.illustrated | 137 |
| abstract_inverted_index.inter-agent | 48 |
| abstract_inverted_index.properties, | 96 |
| abstract_inverted_index.traditional | 78 |
| abstract_inverted_index.variational | 73 |
| abstract_inverted_index.compromising | 130 |
| abstract_inverted_index.conventional | 127 |
| abstract_inverted_index.manipulation | 18 |
| abstract_inverted_index.Reinforcement | 25 |
| abstract_inverted_index.computational | 131 |
| abstract_inverted_index.contributions | 83 |
| abstract_inverted_index.demonstrating | 107 |
| abstract_inverted_index.interactions. | 49 |
| abstract_inverted_index.uncertainties | 41, 93 |
| abstract_inverted_index.understanding | 11 |
| abstract_inverted_index.correspondence | 90 |
| abstract_inverted_index.uncertainties, | 59 |
| abstract_inverted_index.decision-making | 3, 31 |
| abstract_inverted_index.profit-oriented | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |