Evaluation of falls detected by natural language processing algorithm and not coded external cause of morbidity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/jamiaopen/ooaf047
Objective Falls are a leading cause of morbidity and mortality among older adults. Common methods for identifying fall-related ED visits within both claims and electronic health record datasets rely on diagnosis code-based definitions, which underestimate the true prevalence of falls. This study applies a natural language processing (NLP) algorithm to ED provider notes to identify patients presenting due to falls and compares the characteristics of NLP-identified cases to those identified through diagnosis codes to identify the impact of identification strategy. Materials and Methods This cross-sectional study analyzed ED encounter data from older adult patients who visited an ED between December 2016 and 2020. The NLP algorithm identified falls based on provider notes, searching for keywords related to falls and excluding negated and spurious matches. We also applied common ICD code methods to identify falls. Results We processed 50 153 ED encounters and the NLP approach identified 14 604 encounters for patients who fell. Of those, 7086 (49%) were not identified using external cause of morbidity ICD codes. Patients identified by just the NLP algorithm exhibited higher Elixhauser comorbidity scores and increased likelihood of 30-day mortality. Patients identified by NLP algorithm but not ICD codes were more likely to have severe underlying conditions such as sepsis or acute kidney disease rather than traumatic injuries. Discussion The NLP algorithm identifies many fall-related visits not identified by traditional methods. Conclusion If the causal relationships between falls and comorbid conditions are not considered in NLP algorithms, they can easily identify patients who fell, but the fall was a sequela of underlying medical illness.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamiaopen/ooaf047
- OA Status
- gold
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411781538
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411781538Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamiaopen/ooaf047Digital Object Identifier
- Title
-
Evaluation of falls detected by natural language processing algorithm and not coded external cause of morbidityWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-02Full publication date if available
- Authors
-
Daniel J Hekman, Apoorva Maru, Hanna J. Barton, Douglas A. Wiegmann, Manish N. Shah, Amy L. Cochran, Erkin Ötleş, Brian W. PattersonList of authors in order
- Landing page
-
https://doi.org/10.1093/jamiaopen/ooaf047Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/jamiaopen/ooaf047Direct OA link when available
- Concepts
-
Medicine, Algorithm, Comorbidity, Machine learning, Diagnosis code, External cause, Artificial intelligence, Electronic health record, ICD-10, Poison control, Injury prevention, Medical emergency, Computer science, Psychiatry, Health care, Population, Economics, Environmental health, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411781538 |
|---|---|
| doi | https://doi.org/10.1093/jamiaopen/ooaf047 |
| ids.doi | https://doi.org/10.1093/jamiaopen/ooaf047 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40584739 |
| ids.openalex | https://openalex.org/W4411781538 |
| fwci | 0.0 |
| type | article |
| title | Evaluation of falls detected by natural language processing algorithm and not coded external cause of morbidity |
| biblio.issue | 3 |
| biblio.volume | 8 |
| biblio.last_page | ooaf047 |
| biblio.first_page | ooaf047 |
| topics[0].id | https://openalex.org/T10114 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3612 |
| topics[0].subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| topics[0].display_name | Balance, Gait, and Falls Prevention |
| topics[1].id | https://openalex.org/T12246 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9958000183105469 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Chronic Disease Management Strategies |
| topics[2].id | https://openalex.org/T11095 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9902999997138977 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2711 |
| topics[2].subfield.display_name | Emergency Medicine |
| topics[2].display_name | Emergency and Acute Care Studies |
| funders[0].id | https://openalex.org/F4320306085 |
| funders[0].ror | https://ror.org/033jnv181 |
| funders[0].display_name | U.S. Department of Health and Human Services |
| funders[1].id | https://openalex.org/F4320332177 |
| funders[1].ror | https://ror.org/03jmfdf59 |
| funders[1].display_name | Agency for Healthcare Research and Quality |
| funders[2].id | https://openalex.org/F4320332505 |
| funders[2].ror | https://ror.org/05xf94514 |
| funders[2].display_name | U.S. Public Health Service |
| is_xpac | False |
| apc_list.value | 3332 |
| apc_list.currency | USD |
| apc_list.value_usd | 3332 |
| apc_paid.value | 3332 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3332 |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7225492000579834 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C11413529 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5993933081626892 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[1].display_name | Algorithm |
| concepts[2].id | https://openalex.org/C2779159551 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5666504502296448 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1414874 |
| concepts[2].display_name | Comorbidity |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.517695426940918 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C45827449 |
| concepts[4].level | 3 |
| concepts[4].score | 0.516486644744873 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5270338 |
| concepts[4].display_name | Diagnosis code |
| concepts[5].id | https://openalex.org/C2779936055 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5024383068084717 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5422022 |
| concepts[5].display_name | External cause |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4641581177711487 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C3020144179 |
| concepts[7].level | 3 |
| concepts[7].score | 0.43719664216041565 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[7].display_name | Electronic health record |
| concepts[8].id | https://openalex.org/C2781116378 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4118291139602661 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45127 |
| concepts[8].display_name | ICD-10 |
| concepts[9].id | https://openalex.org/C3017944768 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3988911211490631 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1450463 |
| concepts[9].display_name | Poison control |
| concepts[10].id | https://openalex.org/C190385971 |
| concepts[10].level | 3 |
| concepts[10].score | 0.3924771249294281 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q373494 |
| concepts[10].display_name | Injury prevention |
| concepts[11].id | https://openalex.org/C545542383 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2998839020729065 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2751242 |
| concepts[11].display_name | Medical emergency |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.25962191820144653 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C118552586 |
| concepts[13].level | 1 |
| concepts[13].score | 0.18493878841400146 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[13].display_name | Psychiatry |
| concepts[14].id | https://openalex.org/C160735492 |
| concepts[14].level | 2 |
| concepts[14].score | 0.14455252885818481 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[14].display_name | Health care |
| concepts[15].id | https://openalex.org/C2908647359 |
| concepts[15].level | 2 |
| concepts[15].score | 0.11453881859779358 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[15].display_name | Population |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C99454951 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[17].display_name | Environmental health |
| concepts[18].id | https://openalex.org/C50522688 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[18].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.7225492000579834 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/algorithm |
| keywords[1].score | 0.5993933081626892 |
| keywords[1].display_name | Algorithm |
| keywords[2].id | https://openalex.org/keywords/comorbidity |
| keywords[2].score | 0.5666504502296448 |
| keywords[2].display_name | Comorbidity |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.517695426940918 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/diagnosis-code |
| keywords[4].score | 0.516486644744873 |
| keywords[4].display_name | Diagnosis code |
| keywords[5].id | https://openalex.org/keywords/external-cause |
| keywords[5].score | 0.5024383068084717 |
| keywords[5].display_name | External cause |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4641581177711487 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/electronic-health-record |
| keywords[7].score | 0.43719664216041565 |
| keywords[7].display_name | Electronic health record |
| keywords[8].id | https://openalex.org/keywords/icd-10 |
| keywords[8].score | 0.4118291139602661 |
| keywords[8].display_name | ICD-10 |
| keywords[9].id | https://openalex.org/keywords/poison-control |
| keywords[9].score | 0.3988911211490631 |
| keywords[9].display_name | Poison control |
| keywords[10].id | https://openalex.org/keywords/injury-prevention |
| keywords[10].score | 0.3924771249294281 |
| keywords[10].display_name | Injury prevention |
| keywords[11].id | https://openalex.org/keywords/medical-emergency |
| keywords[11].score | 0.2998839020729065 |
| keywords[11].display_name | Medical emergency |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.25962191820144653 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/psychiatry |
| keywords[13].score | 0.18493878841400146 |
| keywords[13].display_name | Psychiatry |
| keywords[14].id | https://openalex.org/keywords/health-care |
| keywords[14].score | 0.14455252885818481 |
| keywords[14].display_name | Health care |
| keywords[15].id | https://openalex.org/keywords/population |
| keywords[15].score | 0.11453881859779358 |
| keywords[15].display_name | Population |
| language | en |
| locations[0].id | doi:10.1093/jamiaopen/ooaf047 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210237468 |
| locations[0].source.issn | 2574-2531 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2574-2531 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JAMIA Open |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JAMIA Open |
| locations[0].landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf047 |
| locations[1].id | pmid:40584739 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JAMIA open |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40584739 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5040168638 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7964-9501 |
| authorships[0].author.display_name | Daniel J Hekman |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel J Hekman |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[1].author.id | https://openalex.org/A5030366859 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6184-6446 |
| authorships[1].author.display_name | Apoorva Maru |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[1].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[1].institutions[0].id | https://openalex.org/I135310074 |
| authorships[1].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Apoorva P Maru |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[2].author.id | https://openalex.org/A5066204496 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0457-1153 |
| authorships[2].author.display_name | Hanna J. Barton |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hanna J Barton |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[3].author.id | https://openalex.org/A5070336047 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5604-9853 |
| authorships[3].author.display_name | Douglas A. Wiegmann |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Industrial and Systems Engineering, College of Engineering, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Douglas Wiegmann |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Industrial and Systems Engineering, College of Engineering, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[4].author.id | https://openalex.org/A5013145535 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6331-1074 |
| authorships[4].author.display_name | Manish N. Shah |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[4].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[4].institutions[0].id | https://openalex.org/I135310074 |
| authorships[4].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manish N Shah |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[5].author.id | https://openalex.org/A5005152508 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6024-796X |
| authorships[5].author.display_name | Amy L. Cochran |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[5].institutions[0].id | https://openalex.org/I135310074 |
| authorships[5].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Amy L Cochran |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[6].author.id | https://openalex.org/A5043082025 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3169-6832 |
| authorships[6].author.display_name | Erkin Ötleş |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[6].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[6].institutions[0].id | https://openalex.org/I135310074 |
| authorships[6].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Erkin Ötleş |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[7].author.id | https://openalex.org/A5014690496 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4584-3808 |
| authorships[7].author.display_name | Brian W. Patterson |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[7].affiliations[0].raw_affiliation_string | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| authorships[7].institutions[0].id | https://openalex.org/I135310074 |
| authorships[7].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Brian W Patterson |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | BerbeeWalsh Department of Emergency Medicine, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, WI 53706, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/jamiaopen/ooaf047 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluation of falls detected by natural language processing algorithm and not coded external cause of morbidity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10114 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3612 |
| primary_topic.subfield.display_name | Physical Therapy, Sports Therapy and Rehabilitation |
| primary_topic.display_name | Balance, Gait, and Falls Prevention |
| related_works | https://openalex.org/W4377564205, https://openalex.org/W4382371015, https://openalex.org/W2508398233, https://openalex.org/W3094875968, https://openalex.org/W4313485236, https://openalex.org/W2574799303, https://openalex.org/W3104683586, https://openalex.org/W2802989430, https://openalex.org/W2984162080, https://openalex.org/W2945712483 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1093/jamiaopen/ooaf047 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210237468 |
| best_oa_location.source.issn | 2574-2531 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2574-2531 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JAMIA Open |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JAMIA Open |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf047 |
| primary_location.id | doi:10.1093/jamiaopen/ooaf047 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210237468 |
| primary_location.source.issn | 2574-2531 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2574-2531 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JAMIA Open |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JAMIA Open |
| primary_location.landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf047 |
| publication_date | 2025-05-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3185379264, https://openalex.org/W2341399937, https://openalex.org/W2510669692, https://openalex.org/W4383346287, https://openalex.org/W2232029475, https://openalex.org/W2707690950, https://openalex.org/W4297014655, https://openalex.org/W4313538727, https://openalex.org/W2140302476, https://openalex.org/W2151068025, https://openalex.org/W3010693351, https://openalex.org/W2962766399, https://openalex.org/W3087445312, https://openalex.org/W2135204832, https://openalex.org/W2127469901, https://openalex.org/W4393856167, https://openalex.org/W4241299311, https://openalex.org/W2120032954, https://openalex.org/W2111947854, https://openalex.org/W1614248081, https://openalex.org/W2919304362, https://openalex.org/W4386867830, https://openalex.org/W4399807068 |
| referenced_works_count | 23 |
| abstract_inverted_index.a | 4, 44, 254 |
| abstract_inverted_index.14 | 147 |
| abstract_inverted_index.50 | 138 |
| abstract_inverted_index.ED | 19, 51, 88, 98, 140 |
| abstract_inverted_index.If | 228 |
| abstract_inverted_index.Of | 154 |
| abstract_inverted_index.We | 125, 136 |
| abstract_inverted_index.an | 97 |
| abstract_inverted_index.as | 204 |
| abstract_inverted_index.by | 170, 188, 224 |
| abstract_inverted_index.in | 240 |
| abstract_inverted_index.of | 7, 39, 65, 78, 164, 183, 256 |
| abstract_inverted_index.on | 30, 110 |
| abstract_inverted_index.or | 206 |
| abstract_inverted_index.to | 50, 54, 59, 68, 74, 117, 132, 198 |
| abstract_inverted_index.153 | 139 |
| abstract_inverted_index.604 | 148 |
| abstract_inverted_index.ICD | 129, 166, 193 |
| abstract_inverted_index.NLP | 105, 144, 173, 189, 216, 241 |
| abstract_inverted_index.The | 104, 215 |
| abstract_inverted_index.and | 9, 24, 61, 82, 102, 119, 122, 142, 180, 234 |
| abstract_inverted_index.are | 3, 237 |
| abstract_inverted_index.but | 191, 250 |
| abstract_inverted_index.can | 244 |
| abstract_inverted_index.due | 58 |
| abstract_inverted_index.for | 16, 114, 150 |
| abstract_inverted_index.not | 159, 192, 222, 238 |
| abstract_inverted_index.the | 36, 63, 76, 143, 172, 229, 251 |
| abstract_inverted_index.was | 253 |
| abstract_inverted_index.who | 95, 152, 248 |
| abstract_inverted_index.2016 | 101 |
| abstract_inverted_index.7086 | 156 |
| abstract_inverted_index.This | 41, 84 |
| abstract_inverted_index.also | 126 |
| abstract_inverted_index.both | 22 |
| abstract_inverted_index.code | 130 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.fall | 252 |
| abstract_inverted_index.from | 91 |
| abstract_inverted_index.have | 199 |
| abstract_inverted_index.just | 171 |
| abstract_inverted_index.many | 219 |
| abstract_inverted_index.more | 196 |
| abstract_inverted_index.rely | 29 |
| abstract_inverted_index.such | 203 |
| abstract_inverted_index.than | 211 |
| abstract_inverted_index.they | 243 |
| abstract_inverted_index.true | 37 |
| abstract_inverted_index.were | 158, 195 |
| abstract_inverted_index.(49%) | 157 |
| abstract_inverted_index.(NLP) | 48 |
| abstract_inverted_index.2020. | 103 |
| abstract_inverted_index.Falls | 2 |
| abstract_inverted_index.acute | 207 |
| abstract_inverted_index.adult | 93 |
| abstract_inverted_index.among | 11 |
| abstract_inverted_index.based | 109 |
| abstract_inverted_index.cases | 67 |
| abstract_inverted_index.cause | 6, 163 |
| abstract_inverted_index.codes | 73, 194 |
| abstract_inverted_index.falls | 60, 108, 118, 233 |
| abstract_inverted_index.fell, | 249 |
| abstract_inverted_index.fell. | 153 |
| abstract_inverted_index.notes | 53 |
| abstract_inverted_index.older | 12, 92 |
| abstract_inverted_index.study | 42, 86 |
| abstract_inverted_index.those | 69 |
| abstract_inverted_index.using | 161 |
| abstract_inverted_index.which | 34 |
| abstract_inverted_index.30-day | 184 |
| abstract_inverted_index.Common | 14 |
| abstract_inverted_index.causal | 230 |
| abstract_inverted_index.claims | 23 |
| abstract_inverted_index.codes. | 167 |
| abstract_inverted_index.common | 128 |
| abstract_inverted_index.easily | 245 |
| abstract_inverted_index.falls. | 40, 134 |
| abstract_inverted_index.health | 26 |
| abstract_inverted_index.higher | 176 |
| abstract_inverted_index.impact | 77 |
| abstract_inverted_index.kidney | 208 |
| abstract_inverted_index.likely | 197 |
| abstract_inverted_index.notes, | 112 |
| abstract_inverted_index.rather | 210 |
| abstract_inverted_index.record | 27 |
| abstract_inverted_index.scores | 179 |
| abstract_inverted_index.sepsis | 205 |
| abstract_inverted_index.severe | 200 |
| abstract_inverted_index.those, | 155 |
| abstract_inverted_index.visits | 20, 221 |
| abstract_inverted_index.within | 21 |
| abstract_inverted_index.Methods | 83 |
| abstract_inverted_index.Results | 135 |
| abstract_inverted_index.adults. | 13 |
| abstract_inverted_index.applied | 127 |
| abstract_inverted_index.applies | 43 |
| abstract_inverted_index.between | 99, 232 |
| abstract_inverted_index.disease | 209 |
| abstract_inverted_index.leading | 5 |
| abstract_inverted_index.medical | 258 |
| abstract_inverted_index.methods | 15, 131 |
| abstract_inverted_index.natural | 45 |
| abstract_inverted_index.negated | 121 |
| abstract_inverted_index.related | 116 |
| abstract_inverted_index.sequela | 255 |
| abstract_inverted_index.through | 71 |
| abstract_inverted_index.visited | 96 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.December | 100 |
| abstract_inverted_index.Patients | 168, 186 |
| abstract_inverted_index.analyzed | 87 |
| abstract_inverted_index.approach | 145 |
| abstract_inverted_index.comorbid | 235 |
| abstract_inverted_index.compares | 62 |
| abstract_inverted_index.datasets | 28 |
| abstract_inverted_index.external | 162 |
| abstract_inverted_index.identify | 55, 75, 133, 246 |
| abstract_inverted_index.illness. | 259 |
| abstract_inverted_index.keywords | 115 |
| abstract_inverted_index.language | 46 |
| abstract_inverted_index.matches. | 124 |
| abstract_inverted_index.methods. | 226 |
| abstract_inverted_index.patients | 56, 94, 151, 247 |
| abstract_inverted_index.provider | 52, 111 |
| abstract_inverted_index.spurious | 123 |
| abstract_inverted_index.Materials | 81 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.algorithm | 49, 106, 174, 190, 217 |
| abstract_inverted_index.diagnosis | 31, 72 |
| abstract_inverted_index.encounter | 89 |
| abstract_inverted_index.excluding | 120 |
| abstract_inverted_index.exhibited | 175 |
| abstract_inverted_index.increased | 181 |
| abstract_inverted_index.injuries. | 213 |
| abstract_inverted_index.morbidity | 8, 165 |
| abstract_inverted_index.mortality | 10 |
| abstract_inverted_index.processed | 137 |
| abstract_inverted_index.searching | 113 |
| abstract_inverted_index.strategy. | 80 |
| abstract_inverted_index.traumatic | 212 |
| abstract_inverted_index.Conclusion | 227 |
| abstract_inverted_index.Discussion | 214 |
| abstract_inverted_index.Elixhauser | 177 |
| abstract_inverted_index.code-based | 32 |
| abstract_inverted_index.conditions | 202, 236 |
| abstract_inverted_index.considered | 239 |
| abstract_inverted_index.electronic | 25 |
| abstract_inverted_index.encounters | 141, 149 |
| abstract_inverted_index.identified | 70, 107, 146, 160, 169, 187, 223 |
| abstract_inverted_index.identifies | 218 |
| abstract_inverted_index.likelihood | 182 |
| abstract_inverted_index.mortality. | 185 |
| abstract_inverted_index.presenting | 57 |
| abstract_inverted_index.prevalence | 38 |
| abstract_inverted_index.processing | 47 |
| abstract_inverted_index.underlying | 201, 257 |
| abstract_inverted_index.algorithms, | 242 |
| abstract_inverted_index.comorbidity | 178 |
| abstract_inverted_index.identifying | 17 |
| abstract_inverted_index.traditional | 225 |
| abstract_inverted_index.definitions, | 33 |
| abstract_inverted_index.fall-related | 18, 220 |
| abstract_inverted_index.relationships | 231 |
| abstract_inverted_index.underestimate | 35 |
| abstract_inverted_index.NLP-identified | 66 |
| abstract_inverted_index.identification | 79 |
| abstract_inverted_index.characteristics | 64 |
| abstract_inverted_index.cross-sectional | 85 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.38405325 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |