Evaluation of global gridded crop models in simulating sugarcane yield in China Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.aosl.2023.100329
Sugarcane provides around 80% of the world's sugar production and is also one of the most efficient bioenergy crops. China is the third largest sugarcane-producing country in the world, and skillful simulation of the sugarcane yield in China is thus vital for global production and the trade of sugar and ethanol. Global Gridded Crop Models (GGCMs) are commonly used to predict global and regional crop yield as well as to assess the impacts of climate, environment, and agronomic management changes and feedbacks of crop growth. So far, two GGCMs (CLM5-crop and LPJmL) have been able to model sugarcane, but their performance in China remains unknown. In this study, the authors comprehensively evaluated the sugarcane yield simulations of these two models for the period 1980–2009 using the crop yield statistics collected from the National Bureau of Statistics of China. Results showed that these two models substantially underestimate the multi-year average sugarcane yield, with simulated yields less than one quarter of observations. In addition, CLM5-crop successfully simulates the spatial pattern, while LPJmL does not. In terms of temporal variability, the two models can reproduce the significant upward trend for the national average and in most provinces, but underestimate the magnitude. They also fail to simulate the pattern of interannual variability. The two models underestimate the sugarcane yield partly because they incorrectly set the sugarcane yield coming from the grain as other grain crops, which is inconsistent with the fact that the stem is harvested. 摘要 中国是全球第三大甘蔗生产国, 中国甘蔗产量模拟可服务于全球食糖和乙醇的生产和贸易. 全球格点作物模式CLM5-crop和LPJmL已实现对甘蔗的模拟, 但它们在中国的模拟能力未知. 本文评估结果表明: 两个模式均严重低估了甘蔗产量, 模拟均不足观测的1/4. CLM5-crop能有技巧地模拟产量的空间分布特征, 而LPJmL不能. 两个模式均不能合理模拟产量的年际变化, 且低估了产量的上升趋势. 模式低估甘蔗产量的部分原因是模式假设收割的是甘蔗的穗而非茎.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.aosl.2023.100329
- OA Status
- gold
- Cited By
- 10
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4316037858
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4316037858Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.aosl.2023.100329Digital Object Identifier
- Title
-
Evaluation of global gridded crop models in simulating sugarcane yield in ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-13Full publication date if available
- Authors
-
Dezhen Yin, Jingjing Yan, Fang Li, Tianyuan SongList of authors in order
- Landing page
-
https://doi.org/10.1016/j.aosl.2023.100329Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.aosl.2023.100329Direct OA link when available
- Concepts
-
Crop, Yield (engineering), Crop simulation model, Crop yield, Environmental science, Agronomy, Agricultural engineering, China, Geography, Biology, Engineering, Materials science, Metallurgy, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4316037858 |
|---|---|
| doi | https://doi.org/10.1016/j.aosl.2023.100329 |
| ids.doi | https://doi.org/10.1016/j.aosl.2023.100329 |
| ids.openalex | https://openalex.org/W4316037858 |
| fwci | 2.64180233 |
| type | article |
| title | Evaluation of global gridded crop models in simulating sugarcane yield in China |
| biblio.issue | 2 |
| biblio.volume | 16 |
| biblio.last_page | 100329 |
| biblio.first_page | 100329 |
| topics[0].id | https://openalex.org/T12431 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Sugarcane Cultivation and Processing |
| topics[1].id | https://openalex.org/T12045 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Rice Cultivation and Yield Improvement |
| topics[2].id | https://openalex.org/T10439 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9937000274658203 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1105 |
| topics[2].subfield.display_name | Ecology, Evolution, Behavior and Systematics |
| topics[2].display_name | Climate change impacts on agriculture |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | USD |
| apc_list.value_usd | 1000 |
| apc_paid.value | 1000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1000 |
| concepts[0].id | https://openalex.org/C137580998 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7456344962120056 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q235352 |
| concepts[0].display_name | Crop |
| concepts[1].id | https://openalex.org/C134121241 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7194067239761353 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q899301 |
| concepts[1].display_name | Yield (engineering) |
| concepts[2].id | https://openalex.org/C2777106113 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6891096830368042 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q18349347 |
| concepts[2].display_name | Crop simulation model |
| concepts[3].id | https://openalex.org/C126343540 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6473905444145203 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q889514 |
| concepts[3].display_name | Crop yield |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5759977698326111 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C6557445 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4564701020717621 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[5].display_name | Agronomy |
| concepts[6].id | https://openalex.org/C88463610 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4297577142715454 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194118 |
| concepts[6].display_name | Agricultural engineering |
| concepts[7].id | https://openalex.org/C191935318 |
| concepts[7].level | 2 |
| concepts[7].score | 0.426974356174469 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[7].display_name | China |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.22368642687797546 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15293502807617188 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.06506776809692383 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C192562407 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[11].display_name | Materials science |
| concepts[12].id | https://openalex.org/C191897082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[12].display_name | Metallurgy |
| concepts[13].id | https://openalex.org/C166957645 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[13].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/crop |
| keywords[0].score | 0.7456344962120056 |
| keywords[0].display_name | Crop |
| keywords[1].id | https://openalex.org/keywords/yield |
| keywords[1].score | 0.7194067239761353 |
| keywords[1].display_name | Yield (engineering) |
| keywords[2].id | https://openalex.org/keywords/crop-simulation-model |
| keywords[2].score | 0.6891096830368042 |
| keywords[2].display_name | Crop simulation model |
| keywords[3].id | https://openalex.org/keywords/crop-yield |
| keywords[3].score | 0.6473905444145203 |
| keywords[3].display_name | Crop yield |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.5759977698326111 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/agronomy |
| keywords[5].score | 0.4564701020717621 |
| keywords[5].display_name | Agronomy |
| keywords[6].id | https://openalex.org/keywords/agricultural-engineering |
| keywords[6].score | 0.4297577142715454 |
| keywords[6].display_name | Agricultural engineering |
| keywords[7].id | https://openalex.org/keywords/china |
| keywords[7].score | 0.426974356174469 |
| keywords[7].display_name | China |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.22368642687797546 |
| keywords[8].display_name | Geography |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.15293502807617188 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.06506776809692383 |
| keywords[10].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.aosl.2023.100329 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764567338 |
| locations[0].source.issn | 1674-2834, 2376-6123 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1674-2834 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Atmospheric and Oceanic Science Letters |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Atmospheric and Oceanic Science Letters |
| locations[0].landing_page_url | https://doi.org/10.1016/j.aosl.2023.100329 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5084106789 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dezhen Yin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210165038 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210152758 |
| authorships[0].affiliations[1].raw_affiliation_string | International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210152758 |
| authorships[0].institutions[1].ror | https://ror.org/0424h4e32 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210152758 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Institute of Atmospheric Physics |
| authorships[0].institutions[2].id | https://openalex.org/I4210165038 |
| authorships[0].institutions[2].ror | https://ror.org/05qbk4x57 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210165038 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | University of Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dezhen Yin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China, International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5101156341 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Jingjing Yan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I169572211 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Resources and Environment, Northeast Agricultural University, Harbin, China |
| authorships[1].institutions[0].id | https://openalex.org/I169572211 |
| authorships[1].institutions[0].ror | https://ror.org/0515nd386 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I169572211 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeast Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingjing Yan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Resources and Environment, Northeast Agricultural University, Harbin, China |
| authorships[2].author.id | https://openalex.org/A5100394176 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6523-0008 |
| authorships[2].author.display_name | Fang Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210152758 |
| authorships[2].affiliations[0].raw_affiliation_string | International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I19820366 |
| authorships[2].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[2].institutions[1].id | https://openalex.org/I4210152758 |
| authorships[2].institutions[1].ror | https://ror.org/0424h4e32 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210152758 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Institute of Atmospheric Physics |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fang Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5001194253 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3875-7645 |
| authorships[3].author.display_name | Tianyuan Song |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I169572211 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Resources and Environment, Northeast Agricultural University, Harbin, China |
| authorships[3].institutions[0].id | https://openalex.org/I169572211 |
| authorships[3].institutions[0].ror | https://ror.org/0515nd386 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I169572211 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeast Agricultural University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tianyuan Song |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Resources and Environment, Northeast Agricultural University, Harbin, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.aosl.2023.100329 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Evaluation of global gridded crop models in simulating sugarcane yield in China |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12431 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Sugarcane Cultivation and Processing |
| related_works | https://openalex.org/W2018149064, https://openalex.org/W1987089763, https://openalex.org/W2985080412, https://openalex.org/W4378566980, https://openalex.org/W139018289, https://openalex.org/W2065828020, https://openalex.org/W2002738406, https://openalex.org/W1979405749, https://openalex.org/W2380001790, https://openalex.org/W2515171211 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.aosl.2023.100329 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764567338 |
| best_oa_location.source.issn | 1674-2834, 2376-6123 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1674-2834 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Atmospheric and Oceanic Science Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Atmospheric and Oceanic Science Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.aosl.2023.100329 |
| primary_location.id | doi:10.1016/j.aosl.2023.100329 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764567338 |
| primary_location.source.issn | 1674-2834, 2376-6123 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1674-2834 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Atmospheric and Oceanic Science Letters |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Atmospheric and Oceanic Science Letters |
| primary_location.landing_page_url | https://doi.org/10.1016/j.aosl.2023.100329 |
| publication_date | 2023-01-13 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2145814228, https://openalex.org/W3133008786, https://openalex.org/W2011652601, https://openalex.org/W4214636661, https://openalex.org/W2108940449, https://openalex.org/W3011955160, https://openalex.org/W2059401162, https://openalex.org/W2085541073, https://openalex.org/W2981104727, https://openalex.org/W2330376899, https://openalex.org/W2082066121, https://openalex.org/W2922146099, https://openalex.org/W2076724569, https://openalex.org/W1992080964, https://openalex.org/W4220855680, https://openalex.org/W6655455827, https://openalex.org/W3036600482, https://openalex.org/W6753719545, https://openalex.org/W2521677216, https://openalex.org/W2944377824, https://openalex.org/W2142231247, https://openalex.org/W2077766806, https://openalex.org/W6765126204, https://openalex.org/W2118921617, https://openalex.org/W2064019196, https://openalex.org/W2023439090, https://openalex.org/W2927413391, https://openalex.org/W1487147273, https://openalex.org/W3016353666, https://openalex.org/W4280586919, https://openalex.org/W2021708188, https://openalex.org/W4256453632 |
| referenced_works_count | 32 |
| abstract_inverted_index.In | 105, 160, 172 |
| abstract_inverted_index.So | 85 |
| abstract_inverted_index.as | 66, 68, 227 |
| abstract_inverted_index.in | 26, 36, 101, 191 |
| abstract_inverted_index.is | 10, 20, 38, 232, 240 |
| abstract_inverted_index.of | 4, 13, 32, 47, 73, 82, 116, 134, 136, 158, 174, 205 |
| abstract_inverted_index.to | 59, 69, 95, 201 |
| abstract_inverted_index.80% | 3 |
| abstract_inverted_index.The | 208 |
| abstract_inverted_index.and | 9, 29, 44, 49, 62, 76, 80, 90, 190 |
| abstract_inverted_index.are | 56 |
| abstract_inverted_index.but | 98, 194 |
| abstract_inverted_index.can | 180 |
| abstract_inverted_index.for | 41, 120, 186 |
| abstract_inverted_index.one | 12, 156 |
| abstract_inverted_index.set | 219 |
| abstract_inverted_index.the | 5, 14, 21, 27, 33, 45, 71, 108, 112, 121, 125, 131, 146, 165, 177, 182, 187, 196, 203, 212, 220, 225, 235, 238 |
| abstract_inverted_index.two | 87, 118, 142, 178, 209 |
| abstract_inverted_index.Crop | 53 |
| abstract_inverted_index.They | 198 |
| abstract_inverted_index.able | 94 |
| abstract_inverted_index.also | 11, 199 |
| abstract_inverted_index.been | 93 |
| abstract_inverted_index.crop | 64, 83, 126 |
| abstract_inverted_index.does | 170 |
| abstract_inverted_index.fact | 236 |
| abstract_inverted_index.fail | 200 |
| abstract_inverted_index.far, | 86 |
| abstract_inverted_index.from | 130, 224 |
| abstract_inverted_index.have | 92 |
| abstract_inverted_index.less | 154 |
| abstract_inverted_index.most | 15, 192 |
| abstract_inverted_index.not. | 171 |
| abstract_inverted_index.stem | 239 |
| abstract_inverted_index.than | 155 |
| abstract_inverted_index.that | 140, 237 |
| abstract_inverted_index.they | 217 |
| abstract_inverted_index.this | 106 |
| abstract_inverted_index.thus | 39 |
| abstract_inverted_index.used | 58 |
| abstract_inverted_index.well | 67 |
| abstract_inverted_index.with | 151, 234 |
| abstract_inverted_index.China | 19, 37, 102 |
| abstract_inverted_index.GGCMs | 88 |
| abstract_inverted_index.LPJmL | 169 |
| abstract_inverted_index.grain | 226, 229 |
| abstract_inverted_index.model | 96 |
| abstract_inverted_index.other | 228 |
| abstract_inverted_index.sugar | 7, 48 |
| abstract_inverted_index.terms | 173 |
| abstract_inverted_index.their | 99 |
| abstract_inverted_index.these | 117, 141 |
| abstract_inverted_index.third | 22 |
| abstract_inverted_index.trade | 46 |
| abstract_inverted_index.trend | 185 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.vital | 40 |
| abstract_inverted_index.which | 231 |
| abstract_inverted_index.while | 168 |
| abstract_inverted_index.yield | 35, 65, 114, 127, 214, 222 |
| abstract_inverted_index.Bureau | 133 |
| abstract_inverted_index.China. | 137 |
| abstract_inverted_index.Global | 51 |
| abstract_inverted_index.LPJmL) | 91 |
| abstract_inverted_index.Models | 54 |
| abstract_inverted_index.around | 2 |
| abstract_inverted_index.assess | 70 |
| abstract_inverted_index.coming | 223 |
| abstract_inverted_index.crops, | 230 |
| abstract_inverted_index.crops. | 18 |
| abstract_inverted_index.global | 42, 61 |
| abstract_inverted_index.models | 119, 143, 179, 210 |
| abstract_inverted_index.partly | 215 |
| abstract_inverted_index.period | 122 |
| abstract_inverted_index.showed | 139 |
| abstract_inverted_index.study, | 107 |
| abstract_inverted_index.upward | 184 |
| abstract_inverted_index.world, | 28 |
| abstract_inverted_index.yield, | 150 |
| abstract_inverted_index.yields | 153 |
| abstract_inverted_index.摘要 | 242 |
| abstract_inverted_index.(GGCMs) | 55 |
| abstract_inverted_index.Gridded | 52 |
| abstract_inverted_index.Results | 138 |
| abstract_inverted_index.authors | 109 |
| abstract_inverted_index.average | 148, 189 |
| abstract_inverted_index.because | 216 |
| abstract_inverted_index.changes | 79 |
| abstract_inverted_index.country | 25 |
| abstract_inverted_index.growth. | 84 |
| abstract_inverted_index.impacts | 72 |
| abstract_inverted_index.largest | 23 |
| abstract_inverted_index.pattern | 204 |
| abstract_inverted_index.predict | 60 |
| abstract_inverted_index.quarter | 157 |
| abstract_inverted_index.remains | 103 |
| abstract_inverted_index.spatial | 166 |
| abstract_inverted_index.world's | 6 |
| abstract_inverted_index.National | 132 |
| abstract_inverted_index.climate, | 74 |
| abstract_inverted_index.commonly | 57 |
| abstract_inverted_index.ethanol. | 50 |
| abstract_inverted_index.national | 188 |
| abstract_inverted_index.pattern, | 167 |
| abstract_inverted_index.provides | 1 |
| abstract_inverted_index.regional | 63 |
| abstract_inverted_index.simulate | 202 |
| abstract_inverted_index.skillful | 30 |
| abstract_inverted_index.temporal | 175 |
| abstract_inverted_index.unknown. | 104 |
| abstract_inverted_index.CLM5-crop | 162 |
| abstract_inverted_index.Sugarcane | 0 |
| abstract_inverted_index.addition, | 161 |
| abstract_inverted_index.agronomic | 77 |
| abstract_inverted_index.bioenergy | 17 |
| abstract_inverted_index.collected | 129 |
| abstract_inverted_index.efficient | 16 |
| abstract_inverted_index.evaluated | 111 |
| abstract_inverted_index.feedbacks | 81 |
| abstract_inverted_index.reproduce | 181 |
| abstract_inverted_index.simulated | 152 |
| abstract_inverted_index.simulates | 164 |
| abstract_inverted_index.sugarcane | 34, 113, 149, 213, 221 |
| abstract_inverted_index.(CLM5-crop | 89 |
| abstract_inverted_index.Statistics | 135 |
| abstract_inverted_index.harvested. | 241 |
| abstract_inverted_index.magnitude. | 197 |
| abstract_inverted_index.management | 78 |
| abstract_inverted_index.multi-year | 147 |
| abstract_inverted_index.production | 8, 43 |
| abstract_inverted_index.provinces, | 193 |
| abstract_inverted_index.simulation | 31 |
| abstract_inverted_index.statistics | 128 |
| abstract_inverted_index.sugarcane, | 97 |
| abstract_inverted_index.1980–2009 | 123 |
| abstract_inverted_index.incorrectly | 218 |
| abstract_inverted_index.interannual | 206 |
| abstract_inverted_index.performance | 100 |
| abstract_inverted_index.significant | 183 |
| abstract_inverted_index.simulations | 115 |
| abstract_inverted_index.environment, | 75 |
| abstract_inverted_index.inconsistent | 233 |
| abstract_inverted_index.successfully | 163 |
| abstract_inverted_index.variability, | 176 |
| abstract_inverted_index.variability. | 207 |
| abstract_inverted_index.observations. | 159 |
| abstract_inverted_index.substantially | 144 |
| abstract_inverted_index.underestimate | 145, 195, 211 |
| abstract_inverted_index.comprehensively | 110 |
| abstract_inverted_index.而LPJmL不能. | 251 |
| abstract_inverted_index.sugarcane-producing | 24 |
| abstract_inverted_index.本文评估结果表明: | 247 |
| abstract_inverted_index.模拟均不足观测的1/4. | 249 |
| abstract_inverted_index.且低估了产量的上升趋势. | 253 |
| abstract_inverted_index.中国是全球第三大甘蔗生产国, | 243 |
| abstract_inverted_index.但它们在中国的模拟能力未知. | 246 |
| abstract_inverted_index.两个模式均严重低估了甘蔗产量, | 248 |
| abstract_inverted_index.两个模式均不能合理模拟产量的年际变化, | 252 |
| abstract_inverted_index.CLM5-crop能有技巧地模拟产量的空间分布特征, | 250 |
| abstract_inverted_index.全球格点作物模式CLM5-crop和LPJmL已实现对甘蔗的模拟, | 245 |
| abstract_inverted_index.中国甘蔗产量模拟可服务于全球食糖和乙醇的生产和贸易. | 244 |
| abstract_inverted_index.模式低估甘蔗产量的部分原因是模式假设收割的是甘蔗的穗而非茎. | 254 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5100394176 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210152758 |
| citation_normalized_percentile.value | 0.93564966 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |