EVALUATION OF MODEL BIAS IDENTIFICATION APPROACHES BASED ON BAYESIAN INFERENCE AND APPLICATIONS TO DIGITAL TWINS Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.7712/120223.10325.19795
In recent years, the use of simulation-based digital twins for monitoring and assessment of complex mechanical systems has greatly expanded.Their potential to increase the information obtained from limited data makes them an invaluable tool for a broad range of real-world applications.Nonetheless, there usually exists a discrepancy between the predicted response and the measurements of the system once built.One of the main contributors to this difference in addition to miscalibrated model parameters is the model error.Quantifying this socalled model bias (as well as proper values for the model parameters) is critical for the reliable performance of digital twins.Model bias identification is ultimately an inverse problem where information from measurements is used to update the original model.Bayesian formulations can tackle this task.Including the model bias as a parameter to be inferred enables the use of a Bayesian framework to obtain a probability distribution that represents the uncertainty between the measurements and the model.Simultaneously, this procedure can be combined with a classic parameter updating scheme to account for the trainable parameters in the original model.This study evaluates the effectiveness of different model bias identification approaches based on Bayesian inference methods.This includes more classical approaches such as direct parameter estimation using MCMC in a Bayesian setup, as well as more recent proposals such as stat-FEM or orthogonal Gaussian Processes.Their potential use in digital twins, generalization capabilities, and computational cost is extensively analyzed.67
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.7712/120223.10325.19795
- https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347
- OA Status
- bronze
- Cited By
- 2
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387986281
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387986281Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7712/120223.10325.19795Digital Object Identifier
- Title
-
EVALUATION OF MODEL BIAS IDENTIFICATION APPROACHES BASED ON BAYESIAN INFERENCE AND APPLICATIONS TO DIGITAL TWINSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Daniel Andrés Arcones, Martin Weiser, Phaedon‐Stelios Koutsourelakis, Jörg F. UngerList of authors in order
- Landing page
-
https://doi.org/10.7712/120223.10325.19795Publisher landing page
- PDF URL
-
https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347Direct OA link when available
- Concepts
-
Computer science, Inference, Identification (biology), Bayesian probability, Bayesian inference, Artificial intelligence, Machine learning, Data mining, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 2Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387986281 |
|---|---|
| doi | https://doi.org/10.7712/120223.10325.19795 |
| ids.doi | https://doi.org/10.7712/120223.10325.19795 |
| ids.openalex | https://openalex.org/W4387986281 |
| fwci | |
| type | article |
| title | EVALUATION OF MODEL BIAS IDENTIFICATION APPROACHES BASED ON BAYESIAN INFERENCE AND APPLICATIONS TO DIGITAL TWINS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7198894619941711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6333340406417847 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6048840284347534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C107673813 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5633291602134705 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[3].display_name | Bayesian probability |
| concepts[4].id | https://openalex.org/C160234255 |
| concepts[4].level | 3 |
| concepts[4].score | 0.510394275188446 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[4].display_name | Bayesian inference |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5049276947975159 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4326513409614563 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35883936285972595 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C59822182 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[9].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7198894619941711 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6333340406417847 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.6048840284347534 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/bayesian-probability |
| keywords[3].score | 0.5633291602134705 |
| keywords[3].display_name | Bayesian probability |
| keywords[4].id | https://openalex.org/keywords/bayesian-inference |
| keywords[4].score | 0.510394275188446 |
| keywords[4].display_name | Bayesian inference |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5049276947975159 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.4326513409614563 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.35883936285972595 |
| keywords[7].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.7712/120223.10325.19795 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4386872593 |
| locations[0].source.issn | 2623-3339 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2623-3339 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | UNCECOMP Proceedings |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 5th International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019) |
| locations[0].landing_page_url | https://doi.org/10.7712/120223.10325.19795 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5035638107 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-2522-2179 |
| authorships[0].author.display_name | Daniel Andrés Arcones |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1330165540 |
| authorships[0].affiliations[0].raw_affiliation_string | Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87, 12205 Berlin, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I1330165540 |
| authorships[0].institutions[0].ror | https://ror.org/03x516a66 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330165540 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Federal Institute For Materials Research and Testing |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Daniel Andrés Arcones |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87, 12205 Berlin, Germany |
| authorships[1].author.id | https://openalex.org/A5000027274 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1071-0044 |
| authorships[1].author.display_name | Martin Weiser |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I195893171 |
| authorships[1].affiliations[0].raw_affiliation_string | Zuse Institute Berlin (ZIB) Takustraße 7, 14195 Berlin, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I195893171 |
| authorships[1].institutions[0].ror | https://ror.org/02eva5865 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I195893171 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Zuse Institute Berlin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Martin Weiser |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Zuse Institute Berlin (ZIB) Takustraße 7, 14195 Berlin, Germany |
| authorships[2].author.id | https://openalex.org/A5053827070 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9345-759X |
| authorships[2].author.display_name | Phaedon‐Stelios Koutsourelakis |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[2].affiliations[0].raw_affiliation_string | Technical University of Munich (TUM) Boltzmannstraße 15, 85748 Garching bei München, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I62916508 |
| authorships[2].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technical University of Munich |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Faidon-Stelios Koutsourelakis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Technical University of Munich (TUM) Boltzmannstraße 15, 85748 Garching bei München, Germany |
| authorships[3].author.id | https://openalex.org/A5075972804 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0035-0951 |
| authorships[3].author.display_name | Jörg F. Unger |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1330165540 |
| authorships[3].affiliations[0].raw_affiliation_string | Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87, 12205 Berlin, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I1330165540 |
| authorships[3].institutions[0].ror | https://ror.org/03x516a66 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1330165540 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Federal Institute For Materials Research and Testing |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Jörg F. Unger |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87, 12205 Berlin, Germany |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EVALUATION OF MODEL BIAS IDENTIFICATION APPROACHES BASED ON BAYESIAN INFERENCE AND APPLICATIONS TO DIGITAL TWINS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| related_works | https://openalex.org/W2372267530, https://openalex.org/W2969189870, https://openalex.org/W3015855446, https://openalex.org/W4303857162, https://openalex.org/W2965643117, https://openalex.org/W4288266653, https://openalex.org/W2407375987, https://openalex.org/W2505726097, https://openalex.org/W2950975704, https://openalex.org/W3049691116 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7712/120223.10325.19795 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4386872593 |
| best_oa_location.source.issn | 2623-3339 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2623-3339 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UNCECOMP Proceedings |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 5th International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019) |
| best_oa_location.landing_page_url | https://doi.org/10.7712/120223.10325.19795 |
| primary_location.id | doi:10.7712/120223.10325.19795 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4386872593 |
| primary_location.source.issn | 2623-3339 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2623-3339 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | UNCECOMP Proceedings |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://files.eccomasproceedia.org/papers/uncecomp-2023/U23_19795.pdf?mtime=20231027200347 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 5th International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2019) |
| primary_location.landing_page_url | https://doi.org/10.7712/120223.10325.19795 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2165528241, https://openalex.org/W2976301483, https://openalex.org/W3045751695, https://openalex.org/W2966928317, https://openalex.org/W4385540946, https://openalex.org/W4234187531, https://openalex.org/W1973333099, https://openalex.org/W2497151737, https://openalex.org/W4313338940, https://openalex.org/W2021039784, https://openalex.org/W1973410308, https://openalex.org/W4213156773, https://openalex.org/W2988439746 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 35, 44, 124, 133, 138, 157, 199 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 31, 101 |
| abstract_inverted_index.as | 81, 123, 192, 202, 204, 209 |
| abstract_inverted_index.be | 127, 154 |
| abstract_inverted_index.in | 65, 168, 198, 217 |
| abstract_inverted_index.is | 71, 88, 99, 108, 225 |
| abstract_inverted_index.of | 5, 13, 38, 53, 58, 94, 132, 176 |
| abstract_inverted_index.on | 183 |
| abstract_inverted_index.or | 211 |
| abstract_inverted_index.to | 21, 62, 67, 110, 126, 136, 162 |
| abstract_inverted_index.(as | 79 |
| abstract_inverted_index.and | 11, 50, 148, 222 |
| abstract_inverted_index.can | 116, 153 |
| abstract_inverted_index.for | 9, 34, 84, 90, 164 |
| abstract_inverted_index.has | 17 |
| abstract_inverted_index.the | 3, 23, 47, 51, 54, 59, 72, 85, 91, 112, 120, 130, 143, 146, 149, 165, 169, 174 |
| abstract_inverted_index.use | 4, 131, 216 |
| abstract_inverted_index.MCMC | 197 |
| abstract_inverted_index.bias | 78, 97, 122, 179 |
| abstract_inverted_index.cost | 224 |
| abstract_inverted_index.data | 28 |
| abstract_inverted_index.from | 26, 106 |
| abstract_inverted_index.main | 60 |
| abstract_inverted_index.more | 188, 205 |
| abstract_inverted_index.once | 56 |
| abstract_inverted_index.such | 191, 208 |
| abstract_inverted_index.that | 141 |
| abstract_inverted_index.them | 30 |
| abstract_inverted_index.this | 63, 75, 118, 151 |
| abstract_inverted_index.tool | 33 |
| abstract_inverted_index.used | 109 |
| abstract_inverted_index.well | 80, 203 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.based | 182 |
| abstract_inverted_index.broad | 36 |
| abstract_inverted_index.makes | 29 |
| abstract_inverted_index.model | 69, 73, 77, 86, 121, 178 |
| abstract_inverted_index.range | 37 |
| abstract_inverted_index.study | 172 |
| abstract_inverted_index.there | 41 |
| abstract_inverted_index.twins | 8 |
| abstract_inverted_index.using | 196 |
| abstract_inverted_index.where | 104 |
| abstract_inverted_index.direct | 193 |
| abstract_inverted_index.exists | 43 |
| abstract_inverted_index.obtain | 137 |
| abstract_inverted_index.proper | 82 |
| abstract_inverted_index.recent | 1, 206 |
| abstract_inverted_index.scheme | 161 |
| abstract_inverted_index.setup, | 201 |
| abstract_inverted_index.system | 55 |
| abstract_inverted_index.tackle | 117 |
| abstract_inverted_index.twins, | 219 |
| abstract_inverted_index.update | 111 |
| abstract_inverted_index.values | 83 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.account | 163 |
| abstract_inverted_index.between | 46, 145 |
| abstract_inverted_index.classic | 158 |
| abstract_inverted_index.complex | 14 |
| abstract_inverted_index.digital | 7, 95, 218 |
| abstract_inverted_index.enables | 129 |
| abstract_inverted_index.greatly | 18 |
| abstract_inverted_index.inverse | 102 |
| abstract_inverted_index.limited | 27 |
| abstract_inverted_index.problem | 103 |
| abstract_inverted_index.systems | 16 |
| abstract_inverted_index.usually | 42 |
| abstract_inverted_index.Bayesian | 134, 184, 200 |
| abstract_inverted_index.Gaussian | 213 |
| abstract_inverted_index.addition | 66 |
| abstract_inverted_index.combined | 155 |
| abstract_inverted_index.critical | 89 |
| abstract_inverted_index.includes | 187 |
| abstract_inverted_index.increase | 22 |
| abstract_inverted_index.inferred | 128 |
| abstract_inverted_index.obtained | 25 |
| abstract_inverted_index.original | 113, 170 |
| abstract_inverted_index.reliable | 92 |
| abstract_inverted_index.response | 49 |
| abstract_inverted_index.socalled | 76 |
| abstract_inverted_index.stat-FEM | 210 |
| abstract_inverted_index.updating | 160 |
| abstract_inverted_index.built.One | 57 |
| abstract_inverted_index.classical | 189 |
| abstract_inverted_index.different | 177 |
| abstract_inverted_index.evaluates | 173 |
| abstract_inverted_index.framework | 135 |
| abstract_inverted_index.inference | 185 |
| abstract_inverted_index.parameter | 125, 159, 194 |
| abstract_inverted_index.potential | 20, 215 |
| abstract_inverted_index.predicted | 48 |
| abstract_inverted_index.procedure | 152 |
| abstract_inverted_index.proposals | 207 |
| abstract_inverted_index.trainable | 166 |
| abstract_inverted_index.approaches | 181, 190 |
| abstract_inverted_index.assessment | 12 |
| abstract_inverted_index.difference | 64 |
| abstract_inverted_index.estimation | 195 |
| abstract_inverted_index.invaluable | 32 |
| abstract_inverted_index.mechanical | 15 |
| abstract_inverted_index.model.This | 171 |
| abstract_inverted_index.monitoring | 10 |
| abstract_inverted_index.orthogonal | 212 |
| abstract_inverted_index.parameters | 70, 167 |
| abstract_inverted_index.real-world | 39 |
| abstract_inverted_index.represents | 142 |
| abstract_inverted_index.ultimately | 100 |
| abstract_inverted_index.analyzed.67 | 227 |
| abstract_inverted_index.discrepancy | 45 |
| abstract_inverted_index.extensively | 226 |
| abstract_inverted_index.information | 24, 105 |
| abstract_inverted_index.parameters) | 87 |
| abstract_inverted_index.performance | 93 |
| abstract_inverted_index.probability | 139 |
| abstract_inverted_index.twins.Model | 96 |
| abstract_inverted_index.uncertainty | 144 |
| abstract_inverted_index.contributors | 61 |
| abstract_inverted_index.distribution | 140 |
| abstract_inverted_index.formulations | 115 |
| abstract_inverted_index.measurements | 52, 107, 147 |
| abstract_inverted_index.methods.This | 186 |
| abstract_inverted_index.capabilities, | 221 |
| abstract_inverted_index.computational | 223 |
| abstract_inverted_index.effectiveness | 175 |
| abstract_inverted_index.miscalibrated | 68 |
| abstract_inverted_index.expanded.Their | 19 |
| abstract_inverted_index.generalization | 220 |
| abstract_inverted_index.identification | 98, 180 |
| abstract_inverted_index.model.Bayesian | 114 |
| abstract_inverted_index.task.Including | 119 |
| abstract_inverted_index.Processes.Their | 214 |
| abstract_inverted_index.simulation-based | 6 |
| abstract_inverted_index.error.Quantifying | 74 |
| abstract_inverted_index.model.Simultaneously, | 150 |
| abstract_inverted_index.applications.Nonetheless, | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |