Evaluation of Spatial Variability of Soil Nutrients in Saline–Alkali Farmland Using Automatic Machine Learning Model and Hyperspectral Data Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/ijgi14100403
Saline–alkali soils represent a significant reserve of arable land, playing a vital role in ensuring national food security. Given that saline–alkali soil has low soil organic matter (SOM) and soil nutrient contents, and that soil quality degradation poses a threat to regional high-quality agricultural development and ecological balance, this study took coastal saline–alkali land as a case study. It adopted the extreme gradient boosting (XGB) model optimized by the tree-structured Parzen estimator (TPE) algorithm, combined with in situ hyperspectral (ISH) and spaceborne hyperspectral (SBH) data, to predict and map soil organic matter and four soil nutrients: alkali nitrogen (AN), available phosphorus (AP), and available potassium (AK). From the research outputs, one can deduce that superior predictive efficacy is exhibited by the TPE-XGB construct, employing in situ hyperspectral datasets. Among these, available phosphorus (R2 = 0.67) exhibits the highest prediction accuracy, followed by organic matter (R2 = 0.65), alkali-hydrolyzable nitrogen (R2 = 0.56), and available potassium (R2 = 0.51). In addition, the spatial continuity mapping results based on spaceborne hyperspectral data show that SOM, AN, AP, and AK in soil nutrients in the study area are concentrated in the northern, eastern, southern, and riverbank and estuarine delta areas, respectively. The variability of soil nutrients from large to small is phosphorus, potassium, nitrogen, and organic matter. The SHAP (SHapley Additive exPlanations) analysis results reveal that the bands with the greatest contribution to the fitting of SOM, AN, AP, and AK are 612 nm, 571 nm, 1493 nm, and 1308 nm, respectively. Extending into realms of hierarchical partitioning (HP) and variation partitioning (VP), it is discerned that climatic factors (CLI) alongside vegetative aspects (VEG) wield dominant influence upon the spatial differentiation manifest in nutrients. Meanwhile, comparatively diminished are the contributions possessed by terrain (TER) and soil property (SOIL). In summary, this study effectively assessed the significant variation patterns of soil nutrient distribution in coastal saline–alkali soils using the TPE-XGB model, providing scientific basis for the sustainable advancement of agricultural development in saline–alkali coastal regions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/ijgi14100403
- https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698
- OA Status
- gold
- References
- 67
- OpenAlex ID
- https://openalex.org/W4415230688
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415230688Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/ijgi14100403Digital Object Identifier
- Title
-
Evaluation of Spatial Variability of Soil Nutrients in Saline–Alkali Farmland Using Automatic Machine Learning Model and Hyperspectral DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-15Full publication date if available
- Authors
-
Meiyan Xiang, Qing Rao, Xiaohang Yang, Xiaoqian Wu, Dexi Zhan, Jin Zhang, Miao Lu, Yingqiang SongList of authors in order
- Landing page
-
https://doi.org/10.3390/ijgi14100403Publisher landing page
- PDF URL
-
https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
67Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415230688 |
|---|---|
| doi | https://doi.org/10.3390/ijgi14100403 |
| ids.doi | https://doi.org/10.3390/ijgi14100403 |
| ids.openalex | https://openalex.org/W4415230688 |
| fwci | 0.0 |
| type | article |
| title | Evaluation of Spatial Variability of Soil Nutrients in Saline–Alkali Farmland Using Automatic Machine Learning Model and Hyperspectral Data |
| biblio.issue | 10 |
| biblio.volume | 14 |
| biblio.last_page | 403 |
| biblio.first_page | 403 |
| topics[0].id | https://openalex.org/T10770 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Soil Geostatistics and Mapping |
| topics[1].id | https://openalex.org/T13058 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Soil and Land Suitability Analysis |
| topics[2].id | https://openalex.org/T12157 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9811999797821045 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Geochemistry and Geologic Mapping |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| language | en |
| locations[0].id | doi:10.3390/ijgi14100403 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764431341 |
| locations[0].source.issn | 2220-9964 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2220-9964 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | ISPRS International Journal of Geo-Information |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ISPRS International Journal of Geo-Information |
| locations[0].landing_page_url | https://doi.org/10.3390/ijgi14100403 |
| locations[1].id | pmh:oai:doaj.org/article:64996d38967c46a5b0560997f8f4f2fd |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ISPRS International Journal of Geo-Information, Vol 14, Iss 10, p 403 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/64996d38967c46a5b0560997f8f4f2fd |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108936845 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Meiyan Xiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[0].institutions[0].id | https://openalex.org/I119203015 |
| authorships[0].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shandong University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Meiyan Xiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[1].author.id | https://openalex.org/A5103213995 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4990-6455 |
| authorships[1].author.display_name | Qing Rao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[1].institutions[0].id | https://openalex.org/I119203015 |
| authorships[1].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shandong University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qianlong Rao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[2].author.id | https://openalex.org/A5046067201 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Xiaohang Yang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[2].institutions[0].id | https://openalex.org/I119203015 |
| authorships[2].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shandong University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xiaohang Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[3].author.id | https://openalex.org/A5065922107 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1566-3811 |
| authorships[3].author.display_name | Xiaoqian Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[3].institutions[0].id | https://openalex.org/I119203015 |
| authorships[3].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shandong University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoqian Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[4].author.id | https://openalex.org/A5108697088 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Dexi Zhan |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[4].institutions[0].id | https://openalex.org/I119203015 |
| authorships[4].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shandong University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Dexi Zhan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[5].author.id | https://openalex.org/A5100735527 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9001-1931 |
| authorships[5].author.display_name | Jin Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I119203015 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[5].institutions[0].id | https://openalex.org/I119203015 |
| authorships[5].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shandong University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jin Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[6].author.id | https://openalex.org/A5100348920 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-3795-0811 |
| authorships[6].author.display_name | Miao Lu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].raw_affiliation_string | National Center of Technology Innovationfor Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210108914, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[6].affiliations[1].raw_affiliation_string | State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
| authorships[6].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[6].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[6].institutions[1].id | https://openalex.org/I4210108914 |
| authorships[6].institutions[1].ror | https://ror.org/01nrzdp21 |
| authorships[6].institutions[1].type | facility |
| authorships[6].institutions[1].lineage | https://openalex.org/I4210108914, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[6].institutions[1].country_code | CN |
| authorships[6].institutions[1].display_name | Institute of Agricultural Resources and Regional Planning |
| authorships[6].institutions[2].id | https://openalex.org/I4210151987 |
| authorships[6].institutions[2].ror | https://ror.org/05ckt8b96 |
| authorships[6].institutions[2].type | government |
| authorships[6].institutions[2].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210151987 |
| authorships[6].institutions[2].country_code | CN |
| authorships[6].institutions[2].display_name | Ministry of Agriculture and Rural Affairs |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Miao Lu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Center of Technology Innovationfor Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China, State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China/Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China |
| authorships[7].author.id | https://openalex.org/A5070779777 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-9500-8723 |
| authorships[7].author.display_name | Yingqiang Song |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].raw_affiliation_string | National Center of Technology Innovationfor Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I119203015 |
| authorships[7].affiliations[1].raw_affiliation_string | School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| authorships[7].institutions[0].id | https://openalex.org/I119203015 |
| authorships[7].institutions[0].ror | https://ror.org/02mr3ar13 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I119203015 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Shandong University of Technology |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Yingqiang Song |
| authorships[7].is_corresponding | True |
| authorships[7].raw_affiliation_strings | National Center of Technology Innovationfor Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China, School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-16T00:00:00 |
| display_name | Evaluation of Spatial Variability of Soil Nutrients in Saline–Alkali Farmland Using Automatic Machine Learning Model and Hyperspectral Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10770 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Soil Geostatistics and Mapping |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/ijgi14100403 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764431341 |
| best_oa_location.source.issn | 2220-9964 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2220-9964 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | ISPRS International Journal of Geo-Information |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ISPRS International Journal of Geo-Information |
| best_oa_location.landing_page_url | https://doi.org/10.3390/ijgi14100403 |
| primary_location.id | doi:10.3390/ijgi14100403 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764431341 |
| primary_location.source.issn | 2220-9964 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2220-9964 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | ISPRS International Journal of Geo-Information |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2220-9964/14/10/403/pdf?version=1760525698 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ISPRS International Journal of Geo-Information |
| primary_location.landing_page_url | https://doi.org/10.3390/ijgi14100403 |
| publication_date | 2025-10-15 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3197417524, https://openalex.org/W2100328850, https://openalex.org/W2890674048, https://openalex.org/W4397031035, https://openalex.org/W4382318007, https://openalex.org/W4386951253, https://openalex.org/W4386269733, https://openalex.org/W4360977398, https://openalex.org/W4310062695, https://openalex.org/W2007551957, https://openalex.org/W4378760148, https://openalex.org/W3138533280, https://openalex.org/W4385486958, https://openalex.org/W2761454899, https://openalex.org/W4214916944, https://openalex.org/W4214864779, https://openalex.org/W4313245912, https://openalex.org/W2995545753, https://openalex.org/W4362660466, https://openalex.org/W4293795501, https://openalex.org/W4394688982, https://openalex.org/W3171555800, https://openalex.org/W4399283545, https://openalex.org/W4400362066, https://openalex.org/W4404586201, https://openalex.org/W4319966438, https://openalex.org/W3121827240, https://openalex.org/W2934977212, https://openalex.org/W1979204143, https://openalex.org/W4309047636, https://openalex.org/W4413019771, https://openalex.org/W2010797000, https://openalex.org/W3139241485, https://openalex.org/W4210877154, https://openalex.org/W4280587471, https://openalex.org/W4297878000, https://openalex.org/W3136435360, https://openalex.org/W4206373143, https://openalex.org/W4205237613, https://openalex.org/W3194694363, https://openalex.org/W4206926938, https://openalex.org/W3126895058, https://openalex.org/W2887948194, https://openalex.org/W3101509898, https://openalex.org/W4353052212, https://openalex.org/W2606194580, https://openalex.org/W4309315532, https://openalex.org/W4405138138, https://openalex.org/W3215938656, https://openalex.org/W4210486501, https://openalex.org/W4399430802, https://openalex.org/W2085296215, https://openalex.org/W2092980249, https://openalex.org/W2802884194, https://openalex.org/W2126521624, https://openalex.org/W2529756480, https://openalex.org/W4404645823, https://openalex.org/W2062484087, https://openalex.org/W4224985649, https://openalex.org/W2000154727, https://openalex.org/W3001317350, https://openalex.org/W4293386076, https://openalex.org/W2131241448, https://openalex.org/W4291237326, https://openalex.org/W3040394052, https://openalex.org/W2962862931, https://openalex.org/W2968184507 |
| referenced_works_count | 67 |
| abstract_inverted_index.= | 133, 145, 150, 156 |
| abstract_inverted_index.a | 3, 10, 38, 55 |
| abstract_inverted_index.AK | 176, 237 |
| abstract_inverted_index.In | 158, 295 |
| abstract_inverted_index.It | 58 |
| abstract_inverted_index.as | 54 |
| abstract_inverted_index.by | 67, 119, 141, 288 |
| abstract_inverted_index.in | 13, 76, 124, 177, 180, 186, 279, 309, 327 |
| abstract_inverted_index.is | 117, 207, 261 |
| abstract_inverted_index.it | 260 |
| abstract_inverted_index.of | 6, 200, 232, 252, 305, 324 |
| abstract_inverted_index.on | 166 |
| abstract_inverted_index.to | 40, 85, 205, 229 |
| abstract_inverted_index.(R2 | 132, 144, 149, 155 |
| abstract_inverted_index.571 | 241 |
| abstract_inverted_index.612 | 239 |
| abstract_inverted_index.AN, | 173, 234 |
| abstract_inverted_index.AP, | 174, 235 |
| abstract_inverted_index.The | 198, 214 |
| abstract_inverted_index.and | 28, 32, 45, 80, 87, 92, 102, 152, 175, 191, 193, 211, 236, 245, 256, 291 |
| abstract_inverted_index.are | 184, 238, 284 |
| abstract_inverted_index.can | 111 |
| abstract_inverted_index.for | 320 |
| abstract_inverted_index.has | 22 |
| abstract_inverted_index.low | 23 |
| abstract_inverted_index.map | 88 |
| abstract_inverted_index.nm, | 240, 242, 244, 247 |
| abstract_inverted_index.one | 110 |
| abstract_inverted_index.the | 60, 68, 107, 120, 136, 160, 181, 187, 223, 226, 230, 275, 285, 301, 314, 321 |
| abstract_inverted_index.(HP) | 255 |
| abstract_inverted_index.1308 | 246 |
| abstract_inverted_index.1493 | 243 |
| abstract_inverted_index.From | 106 |
| abstract_inverted_index.SHAP | 215 |
| abstract_inverted_index.SOM, | 172, 233 |
| abstract_inverted_index.area | 183 |
| abstract_inverted_index.case | 56 |
| abstract_inverted_index.data | 169 |
| abstract_inverted_index.food | 16 |
| abstract_inverted_index.four | 93 |
| abstract_inverted_index.from | 203 |
| abstract_inverted_index.into | 250 |
| abstract_inverted_index.land | 53 |
| abstract_inverted_index.role | 12 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.situ | 77, 125 |
| abstract_inverted_index.soil | 21, 24, 29, 34, 89, 94, 178, 201, 292, 306 |
| abstract_inverted_index.that | 19, 33, 113, 171, 222, 263 |
| abstract_inverted_index.this | 48, 297 |
| abstract_inverted_index.took | 50 |
| abstract_inverted_index.upon | 274 |
| abstract_inverted_index.with | 75, 225 |
| abstract_inverted_index.(AK). | 105 |
| abstract_inverted_index.(AN), | 98 |
| abstract_inverted_index.(AP), | 101 |
| abstract_inverted_index.(CLI) | 266 |
| abstract_inverted_index.(ISH) | 79 |
| abstract_inverted_index.(SBH) | 83 |
| abstract_inverted_index.(SOM) | 27 |
| abstract_inverted_index.(TER) | 290 |
| abstract_inverted_index.(TPE) | 72 |
| abstract_inverted_index.(VEG) | 270 |
| abstract_inverted_index.(VP), | 259 |
| abstract_inverted_index.(XGB) | 64 |
| abstract_inverted_index.0.67) | 134 |
| abstract_inverted_index.Among | 128 |
| abstract_inverted_index.Given | 18 |
| abstract_inverted_index.bands | 224 |
| abstract_inverted_index.based | 165 |
| abstract_inverted_index.basis | 319 |
| abstract_inverted_index.data, | 84 |
| abstract_inverted_index.delta | 195 |
| abstract_inverted_index.land, | 8 |
| abstract_inverted_index.large | 204 |
| abstract_inverted_index.model | 65 |
| abstract_inverted_index.poses | 37 |
| abstract_inverted_index.small | 206 |
| abstract_inverted_index.soils | 1, 312 |
| abstract_inverted_index.study | 49, 182, 298 |
| abstract_inverted_index.using | 313 |
| abstract_inverted_index.vital | 11 |
| abstract_inverted_index.wield | 271 |
| abstract_inverted_index.0.51). | 157 |
| abstract_inverted_index.0.56), | 151 |
| abstract_inverted_index.0.65), | 146 |
| abstract_inverted_index.Parzen | 70 |
| abstract_inverted_index.alkali | 96 |
| abstract_inverted_index.arable | 7 |
| abstract_inverted_index.areas, | 196 |
| abstract_inverted_index.deduce | 112 |
| abstract_inverted_index.matter | 26, 91, 143 |
| abstract_inverted_index.model, | 316 |
| abstract_inverted_index.realms | 251 |
| abstract_inverted_index.reveal | 221 |
| abstract_inverted_index.study. | 57 |
| abstract_inverted_index.these, | 129 |
| abstract_inverted_index.threat | 39 |
| abstract_inverted_index.(SOIL). | 294 |
| abstract_inverted_index.TPE-XGB | 121, 315 |
| abstract_inverted_index.adopted | 59 |
| abstract_inverted_index.aspects | 269 |
| abstract_inverted_index.coastal | 51, 310, 329 |
| abstract_inverted_index.extreme | 61 |
| abstract_inverted_index.factors | 265 |
| abstract_inverted_index.fitting | 231 |
| abstract_inverted_index.highest | 137 |
| abstract_inverted_index.mapping | 163 |
| abstract_inverted_index.matter. | 213 |
| abstract_inverted_index.organic | 25, 90, 142, 212 |
| abstract_inverted_index.playing | 9 |
| abstract_inverted_index.predict | 86 |
| abstract_inverted_index.quality | 35 |
| abstract_inverted_index.reserve | 5 |
| abstract_inverted_index.results | 164, 220 |
| abstract_inverted_index.spatial | 161, 276 |
| abstract_inverted_index.terrain | 289 |
| abstract_inverted_index.(SHapley | 216 |
| abstract_inverted_index.Additive | 217 |
| abstract_inverted_index.analysis | 219 |
| abstract_inverted_index.assessed | 300 |
| abstract_inverted_index.balance, | 47 |
| abstract_inverted_index.boosting | 63 |
| abstract_inverted_index.climatic | 264 |
| abstract_inverted_index.combined | 74 |
| abstract_inverted_index.dominant | 272 |
| abstract_inverted_index.eastern, | 189 |
| abstract_inverted_index.efficacy | 116 |
| abstract_inverted_index.ensuring | 14 |
| abstract_inverted_index.exhibits | 135 |
| abstract_inverted_index.followed | 140 |
| abstract_inverted_index.gradient | 62 |
| abstract_inverted_index.greatest | 227 |
| abstract_inverted_index.manifest | 278 |
| abstract_inverted_index.national | 15 |
| abstract_inverted_index.nitrogen | 97, 148 |
| abstract_inverted_index.nutrient | 30, 307 |
| abstract_inverted_index.outputs, | 109 |
| abstract_inverted_index.patterns | 304 |
| abstract_inverted_index.property | 293 |
| abstract_inverted_index.regional | 41 |
| abstract_inverted_index.regions. | 330 |
| abstract_inverted_index.research | 108 |
| abstract_inverted_index.summary, | 296 |
| abstract_inverted_index.superior | 114 |
| abstract_inverted_index.Extending | 249 |
| abstract_inverted_index.accuracy, | 139 |
| abstract_inverted_index.addition, | 159 |
| abstract_inverted_index.alongside | 267 |
| abstract_inverted_index.available | 99, 103, 130, 153 |
| abstract_inverted_index.contents, | 31 |
| abstract_inverted_index.datasets. | 127 |
| abstract_inverted_index.discerned | 262 |
| abstract_inverted_index.employing | 123 |
| abstract_inverted_index.estimator | 71 |
| abstract_inverted_index.estuarine | 194 |
| abstract_inverted_index.exhibited | 118 |
| abstract_inverted_index.influence | 273 |
| abstract_inverted_index.nitrogen, | 210 |
| abstract_inverted_index.northern, | 188 |
| abstract_inverted_index.nutrients | 179, 202 |
| abstract_inverted_index.optimized | 66 |
| abstract_inverted_index.possessed | 287 |
| abstract_inverted_index.potassium | 104, 154 |
| abstract_inverted_index.providing | 317 |
| abstract_inverted_index.represent | 2 |
| abstract_inverted_index.riverbank | 192 |
| abstract_inverted_index.security. | 17 |
| abstract_inverted_index.southern, | 190 |
| abstract_inverted_index.variation | 257, 303 |
| abstract_inverted_index.Meanwhile, | 281 |
| abstract_inverted_index.algorithm, | 73 |
| abstract_inverted_index.construct, | 122 |
| abstract_inverted_index.continuity | 162 |
| abstract_inverted_index.diminished | 283 |
| abstract_inverted_index.ecological | 46 |
| abstract_inverted_index.nutrients. | 280 |
| abstract_inverted_index.nutrients: | 95 |
| abstract_inverted_index.phosphorus | 100, 131 |
| abstract_inverted_index.potassium, | 209 |
| abstract_inverted_index.prediction | 138 |
| abstract_inverted_index.predictive | 115 |
| abstract_inverted_index.scientific | 318 |
| abstract_inverted_index.spaceborne | 81, 167 |
| abstract_inverted_index.vegetative | 268 |
| abstract_inverted_index.advancement | 323 |
| abstract_inverted_index.degradation | 36 |
| abstract_inverted_index.development | 44, 326 |
| abstract_inverted_index.effectively | 299 |
| abstract_inverted_index.phosphorus, | 208 |
| abstract_inverted_index.significant | 4, 302 |
| abstract_inverted_index.sustainable | 322 |
| abstract_inverted_index.variability | 199 |
| abstract_inverted_index.agricultural | 43, 325 |
| abstract_inverted_index.concentrated | 185 |
| abstract_inverted_index.contribution | 228 |
| abstract_inverted_index.distribution | 308 |
| abstract_inverted_index.hierarchical | 253 |
| abstract_inverted_index.high-quality | 42 |
| abstract_inverted_index.partitioning | 254, 258 |
| abstract_inverted_index.comparatively | 282 |
| abstract_inverted_index.contributions | 286 |
| abstract_inverted_index.exPlanations) | 218 |
| abstract_inverted_index.hyperspectral | 78, 82, 126, 168 |
| abstract_inverted_index.respectively. | 197, 248 |
| abstract_inverted_index.Saline–alkali | 0 |
| abstract_inverted_index.differentiation | 277 |
| abstract_inverted_index.saline–alkali | 20, 52, 311, 328 |
| abstract_inverted_index.tree-structured | 69 |
| abstract_inverted_index.alkali-hydrolyzable | 147 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5070779777 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I119203015 |
| citation_normalized_percentile.value | 0.51771731 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |