Event-triggered distributed Bayes filter Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.23919/ecc.2019.8795966
The aim of this paper is to devise a strategy that is able to reduce communication bandwidth and, consequently, energy consumption in the context of distributed state estimation over a peer-to-peer sensor network. Specifically, a distributed Bayes filter with event-triggered communication is developed by enforcing each node to transmit its local information to the neighbors only when the Kullback-Leibler divergence between the current local posterior and the one predictable from the last transmission exceeds a preset threshold. The stability of the proposed eventtriggered distributed Bayes filter is proved in the linear-Gaussian (Kalman filter) case. The performance of the proposed algorithm is also evaluated through simulation experiments concerning a target tracking application.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.23919/ecc.2019.8795966
- OA Status
- green
- References
- 24
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2917974268
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2917974268Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.23919/ecc.2019.8795966Digital Object Identifier
- Title
-
Event-triggered distributed Bayes filterWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-01Full publication date if available
- Authors
-
Giorgio Battistelli, Luigi Chisci, Lin Gao, Daniela SelviList of authors in order
- Landing page
-
https://doi.org/10.23919/ecc.2019.8795966Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1902.09825Direct OA link when available
- Concepts
-
Computer science, Kalman filter, Bayes' theorem, Bandwidth (computing), Context (archaeology), Filter (signal processing), Real-time computing, Node (physics), Transmission (telecommunications), Event (particle physics), Algorithm, Control theory (sociology), Bayesian probability, Computer network, Artificial intelligence, Telecommunications, Engineering, Computer vision, Physics, Biology, Paleontology, Structural engineering, Control (management), Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2917974268 |
|---|---|
| doi | https://doi.org/10.23919/ecc.2019.8795966 |
| ids.doi | https://doi.org/10.23919/ecc.2019.8795966 |
| ids.mag | 2917974268 |
| ids.openalex | https://openalex.org/W2917974268 |
| fwci | 0.0 |
| type | preprint |
| title | Event-triggered distributed Bayes filter |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2736 |
| biblio.first_page | 2731 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T12879 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed Sensor Networks and Detection Algorithms |
| topics[2].id | https://openalex.org/T10249 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9840999841690063 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed Control Multi-Agent Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6832886338233948 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C157286648 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6358380913734436 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q846780 |
| concepts[1].display_name | Kalman filter |
| concepts[2].id | https://openalex.org/C207201462 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6060627102851868 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q182505 |
| concepts[2].display_name | Bayes' theorem |
| concepts[3].id | https://openalex.org/C2776257435 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5008225440979004 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[3].display_name | Bandwidth (computing) |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49979186058044434 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C106131492 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4655609428882599 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[5].display_name | Filter (signal processing) |
| concepts[6].id | https://openalex.org/C79403827 |
| concepts[6].level | 1 |
| concepts[6].score | 0.45413005352020264 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[6].display_name | Real-time computing |
| concepts[7].id | https://openalex.org/C62611344 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4502807855606079 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[7].display_name | Node (physics) |
| concepts[8].id | https://openalex.org/C761482 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4486869275569916 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q118093 |
| concepts[8].display_name | Transmission (telecommunications) |
| concepts[9].id | https://openalex.org/C2779662365 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4433205723762512 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[9].display_name | Event (particle physics) |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36340969800949097 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C47446073 |
| concepts[11].level | 3 |
| concepts[11].score | 0.33979296684265137 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5165890 |
| concepts[11].display_name | Control theory (sociology) |
| concepts[12].id | https://openalex.org/C107673813 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2903608977794647 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[12].display_name | Bayesian probability |
| concepts[13].id | https://openalex.org/C31258907 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2353789508342743 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[13].display_name | Computer network |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.21504423022270203 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.16418811678886414 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.13008877635002136 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C31972630 |
| concepts[17].level | 1 |
| concepts[17].score | 0.09407159686088562 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[17].display_name | Computer vision |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C86803240 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[19].display_name | Biology |
| concepts[20].id | https://openalex.org/C151730666 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[20].display_name | Paleontology |
| concepts[21].id | https://openalex.org/C66938386 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[21].display_name | Structural engineering |
| concepts[22].id | https://openalex.org/C2775924081 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[22].display_name | Control (management) |
| concepts[23].id | https://openalex.org/C62520636 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[23].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6832886338233948 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/kalman-filter |
| keywords[1].score | 0.6358380913734436 |
| keywords[1].display_name | Kalman filter |
| keywords[2].id | https://openalex.org/keywords/bayes-theorem |
| keywords[2].score | 0.6060627102851868 |
| keywords[2].display_name | Bayes' theorem |
| keywords[3].id | https://openalex.org/keywords/bandwidth |
| keywords[3].score | 0.5008225440979004 |
| keywords[3].display_name | Bandwidth (computing) |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.49979186058044434 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/filter |
| keywords[5].score | 0.4655609428882599 |
| keywords[5].display_name | Filter (signal processing) |
| keywords[6].id | https://openalex.org/keywords/real-time-computing |
| keywords[6].score | 0.45413005352020264 |
| keywords[6].display_name | Real-time computing |
| keywords[7].id | https://openalex.org/keywords/node |
| keywords[7].score | 0.4502807855606079 |
| keywords[7].display_name | Node (physics) |
| keywords[8].id | https://openalex.org/keywords/transmission |
| keywords[8].score | 0.4486869275569916 |
| keywords[8].display_name | Transmission (telecommunications) |
| keywords[9].id | https://openalex.org/keywords/event |
| keywords[9].score | 0.4433205723762512 |
| keywords[9].display_name | Event (particle physics) |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.36340969800949097 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/control-theory |
| keywords[11].score | 0.33979296684265137 |
| keywords[11].display_name | Control theory (sociology) |
| keywords[12].id | https://openalex.org/keywords/bayesian-probability |
| keywords[12].score | 0.2903608977794647 |
| keywords[12].display_name | Bayesian probability |
| keywords[13].id | https://openalex.org/keywords/computer-network |
| keywords[13].score | 0.2353789508342743 |
| keywords[13].display_name | Computer network |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.21504423022270203 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/telecommunications |
| keywords[15].score | 0.16418811678886414 |
| keywords[15].display_name | Telecommunications |
| keywords[16].id | https://openalex.org/keywords/engineering |
| keywords[16].score | 0.13008877635002136 |
| keywords[16].display_name | Engineering |
| keywords[17].id | https://openalex.org/keywords/computer-vision |
| keywords[17].score | 0.09407159686088562 |
| keywords[17].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.23919/ecc.2019.8795966 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2019 18th European Control Conference (ECC) |
| locations[0].landing_page_url | https://doi.org/10.23919/ecc.2019.8795966 |
| locations[1].id | pmh:oai:arXiv.org:1902.09825 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/1902.09825 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/1902.09825 |
| locations[2].id | mag:2917974268 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | arXiv (Cornell University) |
| locations[2].landing_page_url | http://arxiv.org/pdf/1902.09825.pdf |
| locations[3].id | pmh:oai:arpi.unipi.it:11568/1217014 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4377196265 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | CINECA IRIS Institutial research information system (University of Pisa) |
| locations[3].source.host_organization | https://openalex.org/I108290504 |
| locations[3].source.host_organization_name | University of Pisa |
| locations[3].source.host_organization_lineage | https://openalex.org/I108290504 |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://hdl.handle.net/11568/1217014 |
| locations[4].id | pmh:oai:flore.unifi.it:2158/1161702 |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306402033 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | Florence Research (University of Florence) |
| locations[4].source.host_organization | https://openalex.org/I45084792 |
| locations[4].source.host_organization_name | University of Florence |
| locations[4].source.host_organization_lineage | https://openalex.org/I45084792 |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | info:eu-repo/semantics/conferenceObject |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | |
| locations[4].landing_page_url | http://hdl.handle.net/2158/1161702 |
| locations[5].id | doi:10.48550/arxiv.1902.09825 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306400194 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | True |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | arXiv (Cornell University) |
| locations[5].source.host_organization | https://openalex.org/I205783295 |
| locations[5].source.host_organization_name | Cornell University |
| locations[5].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[5].license | |
| locations[5].pdf_url | |
| locations[5].version | |
| locations[5].raw_type | article |
| locations[5].license_id | |
| locations[5].is_accepted | False |
| locations[5].is_published | |
| locations[5].raw_source_name | |
| locations[5].landing_page_url | https://doi.org/10.48550/arxiv.1902.09825 |
| indexed_in | arxiv, crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5088425269 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0124-4715 |
| authorships[0].author.display_name | Giorgio Battistelli |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210112122 |
| authorships[0].affiliations[0].raw_affiliation_string | Univ of Florence |
| authorships[0].institutions[0].id | https://openalex.org/I4210112122 |
| authorships[0].institutions[0].ror | https://ror.org/021qg3d64 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210112122 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Florence (Netherlands) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Giorgio Battistelli |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Univ of Florence |
| authorships[1].author.id | https://openalex.org/A5050723190 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5049-3577 |
| authorships[1].author.display_name | Luigi Chisci |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210112122 |
| authorships[1].affiliations[0].raw_affiliation_string | Univ of Florence |
| authorships[1].institutions[0].id | https://openalex.org/I4210112122 |
| authorships[1].institutions[0].ror | https://ror.org/021qg3d64 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210112122 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Florence (Netherlands) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luigi Chisci |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Univ of Florence |
| authorships[2].author.id | https://openalex.org/A5002775930 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2871-9239 |
| authorships[2].author.display_name | Lin Gao |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210112122 |
| authorships[2].affiliations[0].raw_affiliation_string | Univ of Florence |
| authorships[2].institutions[0].id | https://openalex.org/I4210112122 |
| authorships[2].institutions[0].ror | https://ror.org/021qg3d64 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210112122 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Florence (Netherlands) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lin Gao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Univ of Florence |
| authorships[3].author.id | https://openalex.org/A5088210043 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3280-4391 |
| authorships[3].author.display_name | Daniela Selvi |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210112122 |
| authorships[3].affiliations[0].raw_affiliation_string | Univ of Florence |
| authorships[3].institutions[0].id | https://openalex.org/I4210112122 |
| authorships[3].institutions[0].ror | https://ror.org/021qg3d64 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210112122 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Florence (Netherlands) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Daniela Selvi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Univ of Florence |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1902.09825 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Event-triggered distributed Bayes filter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W2967916748, https://openalex.org/W2891933037, https://openalex.org/W2761746583, https://openalex.org/W2256663540, https://openalex.org/W2524043575, https://openalex.org/W2103825051, https://openalex.org/W2790060863, https://openalex.org/W2911673437, https://openalex.org/W2995782895, https://openalex.org/W2898533613, https://openalex.org/W2769728167, https://openalex.org/W2249935307, https://openalex.org/W2963165507, https://openalex.org/W2765794526, https://openalex.org/W2025598218, https://openalex.org/W2772030823, https://openalex.org/W2910604283, https://openalex.org/W3009337754, https://openalex.org/W2951306399, https://openalex.org/W2949616040 |
| cited_by_count | 0 |
| locations_count | 6 |
| best_oa_location.id | pmh:oai:arXiv.org:1902.09825 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1902.09825 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1902.09825 |
| primary_location.id | doi:10.23919/ecc.2019.8795966 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2019 18th European Control Conference (ECC) |
| primary_location.landing_page_url | https://doi.org/10.23919/ecc.2019.8795966 |
| publication_date | 2019-06-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2165519686, https://openalex.org/W2078728794, https://openalex.org/W2011753154, https://openalex.org/W2171219871, https://openalex.org/W2255965643, https://openalex.org/W2007709330, https://openalex.org/W2024522552, https://openalex.org/W2103013786, https://openalex.org/W2725672421, https://openalex.org/W1768152053, https://openalex.org/W2395240417, https://openalex.org/W1969747160, https://openalex.org/W2145122884, https://openalex.org/W2286561681, https://openalex.org/W2127821072, https://openalex.org/W2246456512, https://openalex.org/W2158191982, https://openalex.org/W4253925510, https://openalex.org/W2795115382, https://openalex.org/W2093727232, https://openalex.org/W2967916748, https://openalex.org/W1586559311, https://openalex.org/W2891933037, https://openalex.org/W2293895826 |
| referenced_works_count | 24 |
| abstract_inverted_index.a | 8, 29, 34, 74, 107 |
| abstract_inverted_index.by | 43 |
| abstract_inverted_index.in | 21, 88 |
| abstract_inverted_index.is | 5, 11, 41, 86, 100 |
| abstract_inverted_index.of | 2, 24, 79, 96 |
| abstract_inverted_index.to | 6, 13, 47, 52 |
| abstract_inverted_index.The | 0, 77, 94 |
| abstract_inverted_index.aim | 1 |
| abstract_inverted_index.and | 65 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.one | 67 |
| abstract_inverted_index.the | 22, 53, 57, 61, 66, 70, 80, 89, 97 |
| abstract_inverted_index.able | 12 |
| abstract_inverted_index.also | 101 |
| abstract_inverted_index.and, | 17 |
| abstract_inverted_index.each | 45 |
| abstract_inverted_index.from | 69 |
| abstract_inverted_index.last | 71 |
| abstract_inverted_index.node | 46 |
| abstract_inverted_index.only | 55 |
| abstract_inverted_index.over | 28 |
| abstract_inverted_index.that | 10 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.when | 56 |
| abstract_inverted_index.with | 38 |
| abstract_inverted_index.Bayes | 36, 84 |
| abstract_inverted_index.case. | 93 |
| abstract_inverted_index.local | 50, 63 |
| abstract_inverted_index.paper | 4 |
| abstract_inverted_index.state | 26 |
| abstract_inverted_index.devise | 7 |
| abstract_inverted_index.energy | 19 |
| abstract_inverted_index.filter | 37, 85 |
| abstract_inverted_index.preset | 75 |
| abstract_inverted_index.proved | 87 |
| abstract_inverted_index.reduce | 14 |
| abstract_inverted_index.sensor | 31 |
| abstract_inverted_index.target | 108 |
| abstract_inverted_index.(Kalman | 91 |
| abstract_inverted_index.between | 60 |
| abstract_inverted_index.context | 23 |
| abstract_inverted_index.current | 62 |
| abstract_inverted_index.exceeds | 73 |
| abstract_inverted_index.filter) | 92 |
| abstract_inverted_index.through | 103 |
| abstract_inverted_index.network. | 32 |
| abstract_inverted_index.proposed | 81, 98 |
| abstract_inverted_index.strategy | 9 |
| abstract_inverted_index.tracking | 109 |
| abstract_inverted_index.transmit | 48 |
| abstract_inverted_index.algorithm | 99 |
| abstract_inverted_index.bandwidth | 16 |
| abstract_inverted_index.developed | 42 |
| abstract_inverted_index.enforcing | 44 |
| abstract_inverted_index.evaluated | 102 |
| abstract_inverted_index.neighbors | 54 |
| abstract_inverted_index.posterior | 64 |
| abstract_inverted_index.stability | 78 |
| abstract_inverted_index.concerning | 106 |
| abstract_inverted_index.divergence | 59 |
| abstract_inverted_index.estimation | 27 |
| abstract_inverted_index.simulation | 104 |
| abstract_inverted_index.threshold. | 76 |
| abstract_inverted_index.consumption | 20 |
| abstract_inverted_index.distributed | 25, 35, 83 |
| abstract_inverted_index.experiments | 105 |
| abstract_inverted_index.information | 51 |
| abstract_inverted_index.performance | 95 |
| abstract_inverted_index.predictable | 68 |
| abstract_inverted_index.application. | 110 |
| abstract_inverted_index.peer-to-peer | 30 |
| abstract_inverted_index.transmission | 72 |
| abstract_inverted_index.Specifically, | 33 |
| abstract_inverted_index.communication | 15, 40 |
| abstract_inverted_index.consequently, | 18 |
| abstract_inverted_index.eventtriggered | 82 |
| abstract_inverted_index.event-triggered | 39 |
| abstract_inverted_index.linear-Gaussian | 90 |
| abstract_inverted_index.Kullback-Leibler | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.9200000166893005 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.01604547 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |