Evolutionary Multiobjective Optimization with Endmember Priori Strategy for Large-Scale Hyperspectral Sparse Unmixing Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/electronics10172079
Mixed pixels inevitably appear in the hyperspectral image due to the low resolution of the sensor and the mixing of ground objects. Sparse unmixing, as an emerging method to solve the problem of mixed pixels, has received extensive attention in recent years due to its robustness and high efficiency. In theory, sparse unmixing is essentially a multiobjective optimization problem. The sparse endmember term and the reconstruction error term can be regarded as two objectives to optimize simultaneously, and a series of nondominated solutions can be obtained as the final solution. However, the large-scale spectral library poses a challenge due to the high-dimensional number of spectra, it is difficult to accurately extract a few active endmembers and estimate their corresponding abundance from hundreds of spectral features. In order to solve this problem, we propose an evolutionary multiobjective hyperspectral sparse unmixing algorithm with endmember priori strategy (EMSU-EP) to solve the large-scale sparse unmixing problem. The single endmember in the spectral library is used to reconstruct the hyperspectral image, respectively, and the corresponding score of each endmember can be obtained. Then the endmember scores are used as a prior knowledge to guide the generation of the initial population and the new offspring. Finally, a series of nondominated solutions are obtained by the nondominated sorting and the crowding distances calculation. Experiments on two benchmark large-scale simulated data to demonstrate the effectiveness of the proposed algorithm.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/electronics10172079
- https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095
- OA Status
- gold
- Cited By
- 8
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3197141305
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3197141305Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/electronics10172079Digital Object Identifier
- Title
-
Evolutionary Multiobjective Optimization with Endmember Priori Strategy for Large-Scale Hyperspectral Sparse UnmixingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-27Full publication date if available
- Authors
-
Zhao Wang, Jinxin Wei, Jianzhao Li, Peng Li, Fei XieList of authors in order
- Landing page
-
https://doi.org/10.3390/electronics10172079Publisher landing page
- PDF URL
-
https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095Direct OA link when available
- Concepts
-
Endmember, Hyperspectral imaging, A priori and a posteriori, Pattern recognition (psychology), Robustness (evolution), Pixel, Artificial intelligence, Scale (ratio), Computer science, Sorting, Mathematics, Algorithm, Mathematical optimization, Biology, Epistemology, Gene, Philosophy, Quantum mechanics, Physics, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 3, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3197141305 |
|---|---|
| doi | https://doi.org/10.3390/electronics10172079 |
| ids.doi | https://doi.org/10.3390/electronics10172079 |
| ids.mag | 3197141305 |
| ids.openalex | https://openalex.org/W3197141305 |
| fwci | 0.91082037 |
| type | article |
| title | Evolutionary Multiobjective Optimization with Endmember Priori Strategy for Large-Scale Hyperspectral Sparse Unmixing |
| awards[0].id | https://openalex.org/G8027607487 |
| awards[0].funder_id | https://openalex.org/F4320335787 |
| awards[0].display_name | |
| awards[0].funder_award_id | XJS200216 |
| awards[0].funder_display_name | Fundamental Research Funds for the Central Universities |
| awards[1].id | https://openalex.org/G4083118349 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61973249 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 17 |
| biblio.volume | 10 |
| biblio.last_page | 2079 |
| biblio.first_page | 2079 |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T10500 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9927999973297119 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Sparse and Compressive Sensing Techniques |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926999807357788 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C58237817 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9904958009719849 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5376204 |
| concepts[0].display_name | Endmember |
| concepts[1].id | https://openalex.org/C159078339 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8979875445365906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[1].display_name | Hyperspectral imaging |
| concepts[2].id | https://openalex.org/C75553542 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5419039130210876 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q178161 |
| concepts[2].display_name | A priori and a posteriori |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.501767635345459 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C63479239 |
| concepts[4].level | 3 |
| concepts[4].score | 0.49333086609840393 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[4].display_name | Robustness (evolution) |
| concepts[5].id | https://openalex.org/C160633673 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48059722781181335 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[5].display_name | Pixel |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.47176697850227356 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C2778755073 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4603135287761688 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[7].display_name | Scale (ratio) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.44502848386764526 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C111696304 |
| concepts[9].level | 2 |
| concepts[9].score | 0.416179895401001 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2303697 |
| concepts[9].display_name | Sorting |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4090419113636017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3587843179702759 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3576240539550781 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.08393493294715881 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C104317684 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[15].display_name | Gene |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C55493867 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[19].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/endmember |
| keywords[0].score | 0.9904958009719849 |
| keywords[0].display_name | Endmember |
| keywords[1].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[1].score | 0.8979875445365906 |
| keywords[1].display_name | Hyperspectral imaging |
| keywords[2].id | https://openalex.org/keywords/a-priori-and-a-posteriori |
| keywords[2].score | 0.5419039130210876 |
| keywords[2].display_name | A priori and a posteriori |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.501767635345459 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/robustness |
| keywords[4].score | 0.49333086609840393 |
| keywords[4].display_name | Robustness (evolution) |
| keywords[5].id | https://openalex.org/keywords/pixel |
| keywords[5].score | 0.48059722781181335 |
| keywords[5].display_name | Pixel |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.47176697850227356 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/scale |
| keywords[7].score | 0.4603135287761688 |
| keywords[7].display_name | Scale (ratio) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.44502848386764526 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/sorting |
| keywords[9].score | 0.416179895401001 |
| keywords[9].display_name | Sorting |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.4090419113636017 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3587843179702759 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.3576240539550781 |
| keywords[12].display_name | Mathematical optimization |
| keywords[13].id | https://openalex.org/keywords/biology |
| keywords[13].score | 0.08393493294715881 |
| keywords[13].display_name | Biology |
| language | en |
| locations[0].id | doi:10.3390/electronics10172079 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210202905 |
| locations[0].source.issn | 2079-9292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2079-9292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Electronics |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics |
| locations[0].landing_page_url | https://doi.org/10.3390/electronics10172079 |
| locations[1].id | pmh:oai:doaj.org/article:f510bb779ded4d7f912e3e8527e9a026 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics, Vol 10, Iss 2079, p 2079 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/f510bb779ded4d7f912e3e8527e9a026 |
| locations[2].id | pmh:oai:mdpi.com:/2079-9292/10/17/2079/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Electronics; Volume 10; Issue 17; Pages: 2079 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/electronics10172079 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100434571 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3976-7439 |
| authorships[0].author.display_name | Zhao Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhao Wang |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[1].author.id | https://openalex.org/A5039893107 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6289-6258 |
| authorships[1].author.display_name | Jinxin Wei |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[1].institutions[0].id | https://openalex.org/I149594827 |
| authorships[1].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Xidian University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinxin Wei |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[2].author.id | https://openalex.org/A5103165266 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1524-1363 |
| authorships[2].author.display_name | Jianzhao Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[2].institutions[0].id | https://openalex.org/I149594827 |
| authorships[2].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xidian University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jianzhao Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[3].author.id | https://openalex.org/A5100432644 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8838-5715 |
| authorships[3].author.display_name | Peng Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Peng Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Electronic Information Countermeasure and Simulation Technology of Ministry of Education, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[4].author.id | https://openalex.org/A5038907917 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1867-7194 |
| authorships[4].author.display_name | Fei Xie |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[4].affiliations[0].raw_affiliation_string | Academy of Advanced Interdisciplinary Research, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| authorships[4].institutions[0].id | https://openalex.org/I149594827 |
| authorships[4].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Xidian University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Fei Xie |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Academy of Advanced Interdisciplinary Research, Xidian University, No. 2 South TaiBai Road, Xi'an 710071, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-09-13T00:00:00 |
| display_name | Evolutionary Multiobjective Optimization with Endmember Priori Strategy for Large-Scale Hyperspectral Sparse Unmixing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2037328426, https://openalex.org/W1990914742, https://openalex.org/W3106536224, https://openalex.org/W2891033441, https://openalex.org/W2890371384, https://openalex.org/W2315521504, https://openalex.org/W2006559622, https://openalex.org/W2040756827, https://openalex.org/W2138418872, https://openalex.org/W2051769241 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/electronics10172079 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210202905 |
| best_oa_location.source.issn | 2079-9292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2079-9292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Electronics |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics |
| best_oa_location.landing_page_url | https://doi.org/10.3390/electronics10172079 |
| primary_location.id | doi:10.3390/electronics10172079 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210202905 |
| primary_location.source.issn | 2079-9292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2079-9292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Electronics |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2079-9292/10/17/2079/pdf?version=1630384095 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics |
| primary_location.landing_page_url | https://doi.org/10.3390/electronics10172079 |
| publication_date | 2021-08-27 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2324828044, https://openalex.org/W2157321686, https://openalex.org/W2101837437, https://openalex.org/W2114475573, https://openalex.org/W1755724306, https://openalex.org/W2122976738, https://openalex.org/W2129131372, https://openalex.org/W2084252873, https://openalex.org/W2027878671, https://openalex.org/W1964570608, https://openalex.org/W2126527280, https://openalex.org/W3092123241, https://openalex.org/W2759720347, https://openalex.org/W3007040893, https://openalex.org/W2515844138, https://openalex.org/W2762814989, https://openalex.org/W2802876668, https://openalex.org/W2969487932, https://openalex.org/W2140219630, https://openalex.org/W2143381319, https://openalex.org/W2900577216, https://openalex.org/W2946739419, https://openalex.org/W2126105956, https://openalex.org/W1506010655, https://openalex.org/W2764251381, https://openalex.org/W2004207873, https://openalex.org/W2604055362, https://openalex.org/W2038420231, https://openalex.org/W2949464013, https://openalex.org/W3101195009 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 55, 78, 96, 111, 184, 200 |
| abstract_inverted_index.In | 49, 125 |
| abstract_inverted_index.an | 25, 133 |
| abstract_inverted_index.as | 24, 71, 86, 183 |
| abstract_inverted_index.be | 69, 84, 175 |
| abstract_inverted_index.by | 207 |
| abstract_inverted_index.in | 4, 39, 155 |
| abstract_inverted_index.is | 53, 106, 159 |
| abstract_inverted_index.it | 105 |
| abstract_inverted_index.of | 13, 19, 32, 80, 103, 122, 171, 191, 202, 227 |
| abstract_inverted_index.on | 217 |
| abstract_inverted_index.to | 9, 28, 43, 74, 99, 108, 127, 145, 161, 187, 223 |
| abstract_inverted_index.we | 131 |
| abstract_inverted_index.The | 59, 152 |
| abstract_inverted_index.and | 16, 46, 63, 77, 115, 167, 195, 211 |
| abstract_inverted_index.are | 181, 205 |
| abstract_inverted_index.can | 68, 83, 174 |
| abstract_inverted_index.due | 8, 42, 98 |
| abstract_inverted_index.few | 112 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.its | 44 |
| abstract_inverted_index.low | 11 |
| abstract_inverted_index.new | 197 |
| abstract_inverted_index.the | 5, 10, 14, 17, 30, 64, 87, 91, 100, 147, 156, 163, 168, 178, 189, 192, 196, 208, 212, 225, 228 |
| abstract_inverted_index.two | 72, 218 |
| abstract_inverted_index.Then | 177 |
| abstract_inverted_index.data | 222 |
| abstract_inverted_index.each | 172 |
| abstract_inverted_index.from | 120 |
| abstract_inverted_index.high | 47 |
| abstract_inverted_index.term | 62, 67 |
| abstract_inverted_index.this | 129 |
| abstract_inverted_index.used | 160, 182 |
| abstract_inverted_index.with | 140 |
| abstract_inverted_index.Mixed | 0 |
| abstract_inverted_index.error | 66 |
| abstract_inverted_index.final | 88 |
| abstract_inverted_index.guide | 188 |
| abstract_inverted_index.image | 7 |
| abstract_inverted_index.mixed | 33 |
| abstract_inverted_index.order | 126 |
| abstract_inverted_index.poses | 95 |
| abstract_inverted_index.prior | 185 |
| abstract_inverted_index.score | 170 |
| abstract_inverted_index.solve | 29, 128, 146 |
| abstract_inverted_index.their | 117 |
| abstract_inverted_index.years | 41 |
| abstract_inverted_index.Sparse | 22 |
| abstract_inverted_index.active | 113 |
| abstract_inverted_index.appear | 3 |
| abstract_inverted_index.ground | 20 |
| abstract_inverted_index.image, | 165 |
| abstract_inverted_index.method | 27 |
| abstract_inverted_index.mixing | 18 |
| abstract_inverted_index.number | 102 |
| abstract_inverted_index.pixels | 1 |
| abstract_inverted_index.priori | 142 |
| abstract_inverted_index.recent | 40 |
| abstract_inverted_index.scores | 180 |
| abstract_inverted_index.sensor | 15 |
| abstract_inverted_index.series | 79, 201 |
| abstract_inverted_index.single | 153 |
| abstract_inverted_index.sparse | 51, 60, 137, 149 |
| abstract_inverted_index.extract | 110 |
| abstract_inverted_index.initial | 193 |
| abstract_inverted_index.library | 94, 158 |
| abstract_inverted_index.pixels, | 34 |
| abstract_inverted_index.problem | 31 |
| abstract_inverted_index.propose | 132 |
| abstract_inverted_index.sorting | 210 |
| abstract_inverted_index.theory, | 50 |
| abstract_inverted_index.Finally, | 199 |
| abstract_inverted_index.However, | 90 |
| abstract_inverted_index.crowding | 213 |
| abstract_inverted_index.emerging | 26 |
| abstract_inverted_index.estimate | 116 |
| abstract_inverted_index.hundreds | 121 |
| abstract_inverted_index.objects. | 21 |
| abstract_inverted_index.obtained | 85, 206 |
| abstract_inverted_index.optimize | 75 |
| abstract_inverted_index.problem, | 130 |
| abstract_inverted_index.problem. | 58, 151 |
| abstract_inverted_index.proposed | 229 |
| abstract_inverted_index.received | 36 |
| abstract_inverted_index.regarded | 70 |
| abstract_inverted_index.spectra, | 104 |
| abstract_inverted_index.spectral | 93, 123, 157 |
| abstract_inverted_index.strategy | 143 |
| abstract_inverted_index.unmixing | 52, 138, 150 |
| abstract_inverted_index.(EMSU-EP) | 144 |
| abstract_inverted_index.abundance | 119 |
| abstract_inverted_index.algorithm | 139 |
| abstract_inverted_index.attention | 38 |
| abstract_inverted_index.benchmark | 219 |
| abstract_inverted_index.challenge | 97 |
| abstract_inverted_index.difficult | 107 |
| abstract_inverted_index.distances | 214 |
| abstract_inverted_index.endmember | 61, 141, 154, 173, 179 |
| abstract_inverted_index.extensive | 37 |
| abstract_inverted_index.features. | 124 |
| abstract_inverted_index.knowledge | 186 |
| abstract_inverted_index.obtained. | 176 |
| abstract_inverted_index.simulated | 221 |
| abstract_inverted_index.solution. | 89 |
| abstract_inverted_index.solutions | 82, 204 |
| abstract_inverted_index.unmixing, | 23 |
| abstract_inverted_index.accurately | 109 |
| abstract_inverted_index.algorithm. | 230 |
| abstract_inverted_index.endmembers | 114 |
| abstract_inverted_index.generation | 190 |
| abstract_inverted_index.inevitably | 2 |
| abstract_inverted_index.objectives | 73 |
| abstract_inverted_index.offspring. | 198 |
| abstract_inverted_index.population | 194 |
| abstract_inverted_index.resolution | 12 |
| abstract_inverted_index.robustness | 45 |
| abstract_inverted_index.Experiments | 216 |
| abstract_inverted_index.demonstrate | 224 |
| abstract_inverted_index.efficiency. | 48 |
| abstract_inverted_index.essentially | 54 |
| abstract_inverted_index.large-scale | 92, 148, 220 |
| abstract_inverted_index.reconstruct | 162 |
| abstract_inverted_index.calculation. | 215 |
| abstract_inverted_index.evolutionary | 134 |
| abstract_inverted_index.nondominated | 81, 203, 209 |
| abstract_inverted_index.optimization | 57 |
| abstract_inverted_index.corresponding | 118, 169 |
| abstract_inverted_index.effectiveness | 226 |
| abstract_inverted_index.hyperspectral | 6, 136, 164 |
| abstract_inverted_index.respectively, | 166 |
| abstract_inverted_index.multiobjective | 56, 135 |
| abstract_inverted_index.reconstruction | 65 |
| abstract_inverted_index.simultaneously, | 76 |
| abstract_inverted_index.high-dimensional | 101 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100434571 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I149594827 |
| citation_normalized_percentile.value | 0.7752604 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |