Exact Policy Recovery in Offline RL with Both Heavy-Tailed Rewards and Data Corruption Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v38i10.29022
We study offline reinforcement learning (RL) with heavy-tailed reward distribution and data corruption: (i) Moving beyond subGaussian reward distribution, we allow the rewards to have infinite variances; (ii) We allow corruptions where an attacker can arbitrarily modify a small fraction of the rewards and transitions in the dataset. We first derive a sufficient optimality condition for generalized Pessimistic Value Iteration (PEVI), which allows various estimators with proper confidence bounds and can be applied to multiple learning settings. In order to handle the data corruption and heavy-tailed reward setting, we prove that the trimmed-mean estimation achieves the minimax optimal error rate for robust mean estimation under heavy-tailed distributions. In the PEVI algorithm, we plug in the trimmed mean estimation and the confidence bound to solve the robust offline RL problem. Standard analysis reveals that data corruption induces a bias term in the suboptimality gap, which gives the false impression that any data corruption prevents optimal policy learning. By using the optimality condition for the generalized PEVI, we show that as long as the bias term is less than the ``action gap'', the policy returned by PEVI achieves the optimal value given sufficient data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v38i10.29022
- https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939
- OA Status
- diamond
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393159790
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393159790Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v38i10.29022Digital Object Identifier
- Title
-
Exact Policy Recovery in Offline RL with Both Heavy-Tailed Rewards and Data CorruptionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-24Full publication date if available
- Authors
-
Yiding Chen, Xuezhou Zhang, Qiaomin Xie, Xiaojin ZhuList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v38i10.29022Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939Direct OA link when available
- Concepts
-
Language change, Computer science, Computer security, Political science, Art, LiteratureTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393159790 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v38i10.29022 |
| ids.doi | https://doi.org/10.1609/aaai.v38i10.29022 |
| ids.openalex | https://openalex.org/W4393159790 |
| fwci | 0.0 |
| type | article |
| title | Exact Policy Recovery in Offline RL with Both Heavy-Tailed Rewards and Data Corruption |
| biblio.issue | 10 |
| biblio.volume | 38 |
| biblio.last_page | 11424 |
| biblio.first_page | 11416 |
| topics[0].id | https://openalex.org/T10558 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9642999768257141 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advancements in Semiconductor Devices and Circuit Design |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780027415 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6551860570907593 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q524648 |
| concepts[0].display_name | Language change |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.419445663690567 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.38792288303375244 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| concepts[3].id | https://openalex.org/C17744445 |
| concepts[3].level | 0 |
| concepts[3].score | 0.34901946783065796 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[3].display_name | Political science |
| concepts[4].id | https://openalex.org/C142362112 |
| concepts[4].level | 0 |
| concepts[4].score | 0.1325281262397766 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[4].display_name | Art |
| concepts[5].id | https://openalex.org/C124952713 |
| concepts[5].level | 1 |
| concepts[5].score | 0.049704283475875854 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8242 |
| concepts[5].display_name | Literature |
| keywords[0].id | https://openalex.org/keywords/language-change |
| keywords[0].score | 0.6551860570907593 |
| keywords[0].display_name | Language change |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.419445663690567 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.38792288303375244 |
| keywords[2].display_name | Computer security |
| keywords[3].id | https://openalex.org/keywords/political-science |
| keywords[3].score | 0.34901946783065796 |
| keywords[3].display_name | Political science |
| keywords[4].id | https://openalex.org/keywords/art |
| keywords[4].score | 0.1325281262397766 |
| keywords[4].display_name | Art |
| keywords[5].id | https://openalex.org/keywords/literature |
| keywords[5].score | 0.049704283475875854 |
| keywords[5].display_name | Literature |
| language | en |
| locations[0].id | doi:10.1609/aaai.v38i10.29022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v38i10.29022 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006044524 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1759-9112 |
| authorships[0].author.display_name | Yiding Chen |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiding Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Wisconsin-Madison |
| authorships[1].author.id | https://openalex.org/A5022094334 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-7966-1013 |
| authorships[1].author.display_name | Xuezhou Zhang |
| authorships[1].affiliations[0].raw_affiliation_string | Boston University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xuezhou Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Boston University |
| authorships[2].author.id | https://openalex.org/A5008882694 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2834-6866 |
| authorships[2].author.display_name | Qiaomin Xie |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiaomin Xie |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Wisconsin-Madison |
| authorships[3].author.id | https://openalex.org/A5103428074 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xiaojin Zhu |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Wisconsin-Madison |
| authorships[3].institutions[0].id | https://openalex.org/I135310074 |
| authorships[3].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xiaojin Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Wisconsin-Madison |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Exact Policy Recovery in Offline RL with Both Heavy-Tailed Rewards and Data Corruption |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10558 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9642999768257141 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advancements in Semiconductor Devices and Circuit Design |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W4391913857, https://openalex.org/W2350741829, https://openalex.org/W2530322880 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v38i10.29022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v38i10.29022 |
| primary_location.id | doi:10.1609/aaai.v38i10.29022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_lineage_names | Association for the Advancement of Artificial Intelligence |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/29022/29939 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v38i10.29022 |
| publication_date | 2024-03-24 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6799319881, https://openalex.org/W6736209634, https://openalex.org/W2572659264, https://openalex.org/W6832754781, https://openalex.org/W6646531194, https://openalex.org/W2750990725, https://openalex.org/W3182614517, https://openalex.org/W2336954923, https://openalex.org/W2790483052, https://openalex.org/W2806473647, https://openalex.org/W2798302089, https://openalex.org/W2904453761, https://openalex.org/W6661649765, https://openalex.org/W3034925984, https://openalex.org/W6754300060, https://openalex.org/W6719547251, https://openalex.org/W3093206925, https://openalex.org/W6806471512, https://openalex.org/W3106395004, https://openalex.org/W2950526172, https://openalex.org/W2966386280, https://openalex.org/W2990062287, https://openalex.org/W2970912396, https://openalex.org/W2468613975, https://openalex.org/W6755758474, https://openalex.org/W3138939485, https://openalex.org/W2890912058, https://openalex.org/W2944264312, https://openalex.org/W2997293639, https://openalex.org/W6677916085, https://openalex.org/W6781003217, https://openalex.org/W3187326931, https://openalex.org/W4281897969, https://openalex.org/W3203484232, https://openalex.org/W3170697419, https://openalex.org/W3128125857, https://openalex.org/W2808828826, https://openalex.org/W3127429604, https://openalex.org/W3168988767, https://openalex.org/W3013816534, https://openalex.org/W4300352300, https://openalex.org/W4287028319, https://openalex.org/W3034593529, https://openalex.org/W4281918453, https://openalex.org/W4294183581, https://openalex.org/W3174612873, https://openalex.org/W3126729338, https://openalex.org/W2895814682, https://openalex.org/W4287102143, https://openalex.org/W3044681081, https://openalex.org/W3170241279, https://openalex.org/W3094261094, https://openalex.org/W3127580383, https://openalex.org/W2979429887, https://openalex.org/W2942689850, https://openalex.org/W4287330333, https://openalex.org/W4290858323, https://openalex.org/W4289815854, https://openalex.org/W2965685971, https://openalex.org/W3166645952, https://openalex.org/W4249736682, https://openalex.org/W4214717370, https://openalex.org/W2888960341, https://openalex.org/W4291238775, https://openalex.org/W3116146552, https://openalex.org/W4288358187, https://openalex.org/W2949103145, https://openalex.org/W2964013305, https://openalex.org/W2963351358 |
| referenced_works_count | 69 |
| abstract_inverted_index.a | 37, 51, 136 |
| abstract_inverted_index.By | 156 |
| abstract_inverted_index.In | 77, 107 |
| abstract_inverted_index.RL | 127 |
| abstract_inverted_index.We | 0, 28, 48 |
| abstract_inverted_index.an | 32 |
| abstract_inverted_index.as | 168, 170 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.by | 183 |
| abstract_inverted_index.in | 45, 113, 139 |
| abstract_inverted_index.is | 174 |
| abstract_inverted_index.of | 40 |
| abstract_inverted_index.to | 23, 73, 79, 122 |
| abstract_inverted_index.we | 19, 88, 111, 165 |
| abstract_inverted_index.(i) | 13 |
| abstract_inverted_index.and | 10, 43, 69, 84, 118 |
| abstract_inverted_index.any | 149 |
| abstract_inverted_index.can | 34, 70 |
| abstract_inverted_index.for | 55, 100, 161 |
| abstract_inverted_index.the | 21, 41, 46, 81, 91, 95, 108, 114, 119, 124, 140, 145, 158, 162, 171, 177, 180, 186 |
| abstract_inverted_index.(RL) | 5 |
| abstract_inverted_index.(ii) | 27 |
| abstract_inverted_index.PEVI | 109, 184 |
| abstract_inverted_index.bias | 137, 172 |
| abstract_inverted_index.data | 11, 82, 133, 150 |
| abstract_inverted_index.gap, | 142 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.less | 175 |
| abstract_inverted_index.long | 169 |
| abstract_inverted_index.mean | 102, 116 |
| abstract_inverted_index.plug | 112 |
| abstract_inverted_index.rate | 99 |
| abstract_inverted_index.show | 166 |
| abstract_inverted_index.term | 138, 173 |
| abstract_inverted_index.than | 176 |
| abstract_inverted_index.that | 90, 132, 148, 167 |
| abstract_inverted_index.with | 6, 65 |
| abstract_inverted_index.PEVI, | 164 |
| abstract_inverted_index.Value | 58 |
| abstract_inverted_index.allow | 20, 29 |
| abstract_inverted_index.bound | 121 |
| abstract_inverted_index.data. | 191 |
| abstract_inverted_index.error | 98 |
| abstract_inverted_index.false | 146 |
| abstract_inverted_index.first | 49 |
| abstract_inverted_index.given | 189 |
| abstract_inverted_index.gives | 144 |
| abstract_inverted_index.order | 78 |
| abstract_inverted_index.prove | 89 |
| abstract_inverted_index.small | 38 |
| abstract_inverted_index.solve | 123 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.under | 104 |
| abstract_inverted_index.using | 157 |
| abstract_inverted_index.value | 188 |
| abstract_inverted_index.where | 31 |
| abstract_inverted_index.which | 61, 143 |
| abstract_inverted_index.Moving | 14 |
| abstract_inverted_index.allows | 62 |
| abstract_inverted_index.beyond | 15 |
| abstract_inverted_index.bounds | 68 |
| abstract_inverted_index.derive | 50 |
| abstract_inverted_index.gap'', | 179 |
| abstract_inverted_index.handle | 80 |
| abstract_inverted_index.modify | 36 |
| abstract_inverted_index.policy | 154, 181 |
| abstract_inverted_index.proper | 66 |
| abstract_inverted_index.reward | 8, 17, 86 |
| abstract_inverted_index.robust | 101, 125 |
| abstract_inverted_index.(PEVI), | 60 |
| abstract_inverted_index.applied | 72 |
| abstract_inverted_index.induces | 135 |
| abstract_inverted_index.minimax | 96 |
| abstract_inverted_index.offline | 2, 126 |
| abstract_inverted_index.optimal | 97, 153, 187 |
| abstract_inverted_index.reveals | 131 |
| abstract_inverted_index.rewards | 22, 42 |
| abstract_inverted_index.trimmed | 115 |
| abstract_inverted_index.various | 63 |
| abstract_inverted_index.Standard | 129 |
| abstract_inverted_index.``action | 178 |
| abstract_inverted_index.achieves | 94, 185 |
| abstract_inverted_index.analysis | 130 |
| abstract_inverted_index.attacker | 33 |
| abstract_inverted_index.dataset. | 47 |
| abstract_inverted_index.fraction | 39 |
| abstract_inverted_index.infinite | 25 |
| abstract_inverted_index.learning | 4, 75 |
| abstract_inverted_index.multiple | 74 |
| abstract_inverted_index.prevents | 152 |
| abstract_inverted_index.problem. | 128 |
| abstract_inverted_index.returned | 182 |
| abstract_inverted_index.setting, | 87 |
| abstract_inverted_index.Iteration | 59 |
| abstract_inverted_index.condition | 54, 160 |
| abstract_inverted_index.learning. | 155 |
| abstract_inverted_index.settings. | 76 |
| abstract_inverted_index.algorithm, | 110 |
| abstract_inverted_index.confidence | 67, 120 |
| abstract_inverted_index.corruption | 83, 134, 151 |
| abstract_inverted_index.estimation | 93, 103, 117 |
| abstract_inverted_index.estimators | 64 |
| abstract_inverted_index.impression | 147 |
| abstract_inverted_index.optimality | 53, 159 |
| abstract_inverted_index.sufficient | 52, 190 |
| abstract_inverted_index.variances; | 26 |
| abstract_inverted_index.Pessimistic | 57 |
| abstract_inverted_index.arbitrarily | 35 |
| abstract_inverted_index.corruption: | 12 |
| abstract_inverted_index.corruptions | 30 |
| abstract_inverted_index.generalized | 56, 163 |
| abstract_inverted_index.subGaussian | 16 |
| abstract_inverted_index.transitions | 44 |
| abstract_inverted_index.distribution | 9 |
| abstract_inverted_index.heavy-tailed | 7, 85, 105 |
| abstract_inverted_index.trimmed-mean | 92 |
| abstract_inverted_index.distribution, | 18 |
| abstract_inverted_index.reinforcement | 3 |
| abstract_inverted_index.suboptimality | 141 |
| abstract_inverted_index.distributions. | 106 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8299999833106995 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.04070796 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |