Examining Scaling and Transfer of Language Model Architectures for Machine Translation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.00528
Natural language understanding and generation models follow one of the two dominant architectural paradigms: language models (LMs) that process concatenated sequences in a single stack of layers, and encoder-decoder models (EncDec) that utilize separate layer stacks for input and output processing. In machine translation, EncDec has long been the favoured approach, but with few studies investigating the performance of LMs. In this work, we thoroughly examine the role of several architectural design choices on the performance of LMs on bilingual, (massively) multilingual and zero-shot translation tasks, under systematic variations of data conditions and model sizes. Our results show that: (i) Different LMs have different scaling properties, where architectural differences often have a significant impact on model performance at small scales, but the performance gap narrows as the number of parameters increases, (ii) Several design choices, including causal masking and language-modeling objectives for the source sequence, have detrimental effects on translation quality, and (iii) When paired with full-visible masking for source sequences, LMs could perform on par with EncDec on supervised bilingual and multilingual translation tasks, and improve greatly on zero-shot directions by facilitating the reduction of off-target translations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.00528
- https://arxiv.org/pdf/2202.00528
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221148258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221148258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.00528Digital Object Identifier
- Title
-
Examining Scaling and Transfer of Language Model Architectures for Machine TranslationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-01Full publication date if available
- Authors
-
Biao Zhang, Behrooz Ghorbani, Ankur Bapna, Yong Cheng, Xavier García, Jonathan Shen, Orhan FıratList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.00528Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.00528Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.00528Direct OA link when available
- Concepts
-
Computer science, Machine translation, Translation (biology), Language model, Masking (illustration), Scaling, Stack (abstract data type), Encoder, Speech recognition, Process (computing), Natural language processing, Artificial intelligence, Programming language, Biochemistry, Chemistry, Art, Gene, Geometry, Messenger RNA, Mathematics, Visual arts, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221148258 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.00528 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.00528 |
| ids.openalex | https://openalex.org/W4221148258 |
| fwci | |
| type | preprint |
| title | Examining Scaling and Transfer of Language Model Architectures for Machine Translation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9984999895095825 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9641000032424927 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.841227650642395 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C203005215 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6483330726623535 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q79798 |
| concepts[1].display_name | Machine translation |
| concepts[2].id | https://openalex.org/C149364088 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5656722784042358 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q185917 |
| concepts[2].display_name | Translation (biology) |
| concepts[3].id | https://openalex.org/C137293760 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5574284195899963 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[3].display_name | Language model |
| concepts[4].id | https://openalex.org/C2777402240 |
| concepts[4].level | 2 |
| concepts[4].score | 0.552443265914917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6783436 |
| concepts[4].display_name | Masking (illustration) |
| concepts[5].id | https://openalex.org/C99844830 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4846380352973938 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q102441924 |
| concepts[5].display_name | Scaling |
| concepts[6].id | https://openalex.org/C9395851 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4777871072292328 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177929 |
| concepts[6].display_name | Stack (abstract data type) |
| concepts[7].id | https://openalex.org/C118505674 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4726147949695587 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42586063 |
| concepts[7].display_name | Encoder |
| concepts[8].id | https://openalex.org/C28490314 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4379734992980957 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[8].display_name | Speech recognition |
| concepts[9].id | https://openalex.org/C98045186 |
| concepts[9].level | 2 |
| concepts[9].score | 0.42329809069633484 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[9].display_name | Process (computing) |
| concepts[10].id | https://openalex.org/C204321447 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4071842432022095 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[10].display_name | Natural language processing |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38585975766181946 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.10599038004875183 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C142362112 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[15].display_name | Art |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C105580179 |
| concepts[18].level | 3 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q188928 |
| concepts[18].display_name | Messenger RNA |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C153349607 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[20].display_name | Visual arts |
| concepts[21].id | https://openalex.org/C111919701 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[21].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.841227650642395 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/machine-translation |
| keywords[1].score | 0.6483330726623535 |
| keywords[1].display_name | Machine translation |
| keywords[2].id | https://openalex.org/keywords/translation |
| keywords[2].score | 0.5656722784042358 |
| keywords[2].display_name | Translation (biology) |
| keywords[3].id | https://openalex.org/keywords/language-model |
| keywords[3].score | 0.5574284195899963 |
| keywords[3].display_name | Language model |
| keywords[4].id | https://openalex.org/keywords/masking |
| keywords[4].score | 0.552443265914917 |
| keywords[4].display_name | Masking (illustration) |
| keywords[5].id | https://openalex.org/keywords/scaling |
| keywords[5].score | 0.4846380352973938 |
| keywords[5].display_name | Scaling |
| keywords[6].id | https://openalex.org/keywords/stack |
| keywords[6].score | 0.4777871072292328 |
| keywords[6].display_name | Stack (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/encoder |
| keywords[7].score | 0.4726147949695587 |
| keywords[7].display_name | Encoder |
| keywords[8].id | https://openalex.org/keywords/speech-recognition |
| keywords[8].score | 0.4379734992980957 |
| keywords[8].display_name | Speech recognition |
| keywords[9].id | https://openalex.org/keywords/process |
| keywords[9].score | 0.42329809069633484 |
| keywords[9].display_name | Process (computing) |
| keywords[10].id | https://openalex.org/keywords/natural-language-processing |
| keywords[10].score | 0.4071842432022095 |
| keywords[10].display_name | Natural language processing |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.38585975766181946 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/programming-language |
| keywords[12].score | 0.10599038004875183 |
| keywords[12].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.00528 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.00528 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.00528 |
| locations[1].id | doi:10.48550/arxiv.2202.00528 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.00528 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100363719 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4865-7090 |
| authorships[0].author.display_name | Biao Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Biao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5051865121 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Behrooz Ghorbani |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ghorbani, Behrooz |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5024316712 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Ankur Bapna |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bapna, Ankur |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100349974 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9043-8302 |
| authorships[3].author.display_name | Yong Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Cheng, Yong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5082383881 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8500-4224 |
| authorships[4].author.display_name | Xavier García |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Garcia, Xavier |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5021278619 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jonathan Shen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Shen, Jonathan |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5035914396 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5775-2420 |
| authorships[6].author.display_name | Orhan Fırat |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Firat, Orhan |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.00528 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Examining Scaling and Transfer of Language Model Architectures for Machine Translation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2380576232, https://openalex.org/W2937054111, https://openalex.org/W2066223521, https://openalex.org/W2013178899, https://openalex.org/W373327546, https://openalex.org/W2321534397, https://openalex.org/W2058958858, https://openalex.org/W2077601556, https://openalex.org/W2148243540, https://openalex.org/W1835805572 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.00528 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.00528 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.00528 |
| primary_location.id | pmh:oai:arXiv.org:2202.00528 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.00528 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.00528 |
| publication_date | 2022-02-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 22, 111 |
| abstract_inverted_index.In | 41, 60 |
| abstract_inverted_index.as | 125 |
| abstract_inverted_index.at | 117 |
| abstract_inverted_index.by | 181 |
| abstract_inverted_index.in | 21 |
| abstract_inverted_index.of | 8, 25, 58, 68, 76, 89, 128, 185 |
| abstract_inverted_index.on | 73, 78, 114, 148, 164, 168, 178 |
| abstract_inverted_index.we | 63 |
| abstract_inverted_index.(i) | 99 |
| abstract_inverted_index.LMs | 77, 101, 161 |
| abstract_inverted_index.Our | 95 |
| abstract_inverted_index.and | 3, 27, 38, 82, 92, 138, 151, 171, 175 |
| abstract_inverted_index.but | 51, 120 |
| abstract_inverted_index.few | 53 |
| abstract_inverted_index.for | 36, 141, 158 |
| abstract_inverted_index.gap | 123 |
| abstract_inverted_index.has | 45 |
| abstract_inverted_index.one | 7 |
| abstract_inverted_index.par | 165 |
| abstract_inverted_index.the | 9, 48, 56, 66, 74, 121, 126, 142, 183 |
| abstract_inverted_index.two | 10 |
| abstract_inverted_index.(ii) | 131 |
| abstract_inverted_index.LMs. | 59 |
| abstract_inverted_index.When | 153 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.data | 90 |
| abstract_inverted_index.have | 102, 110, 145 |
| abstract_inverted_index.long | 46 |
| abstract_inverted_index.role | 67 |
| abstract_inverted_index.show | 97 |
| abstract_inverted_index.that | 17, 31 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.with | 52, 155, 166 |
| abstract_inverted_index.(LMs) | 16 |
| abstract_inverted_index.(iii) | 152 |
| abstract_inverted_index.could | 162 |
| abstract_inverted_index.input | 37 |
| abstract_inverted_index.layer | 34 |
| abstract_inverted_index.model | 93, 115 |
| abstract_inverted_index.often | 109 |
| abstract_inverted_index.small | 118 |
| abstract_inverted_index.stack | 24 |
| abstract_inverted_index.that: | 98 |
| abstract_inverted_index.under | 86 |
| abstract_inverted_index.where | 106 |
| abstract_inverted_index.work, | 62 |
| abstract_inverted_index.EncDec | 44, 167 |
| abstract_inverted_index.causal | 136 |
| abstract_inverted_index.design | 71, 133 |
| abstract_inverted_index.follow | 6 |
| abstract_inverted_index.impact | 113 |
| abstract_inverted_index.models | 5, 15, 29 |
| abstract_inverted_index.number | 127 |
| abstract_inverted_index.output | 39 |
| abstract_inverted_index.paired | 154 |
| abstract_inverted_index.single | 23 |
| abstract_inverted_index.sizes. | 94 |
| abstract_inverted_index.source | 143, 159 |
| abstract_inverted_index.stacks | 35 |
| abstract_inverted_index.tasks, | 85, 174 |
| abstract_inverted_index.Natural | 0 |
| abstract_inverted_index.Several | 132 |
| abstract_inverted_index.choices | 72 |
| abstract_inverted_index.effects | 147 |
| abstract_inverted_index.examine | 65 |
| abstract_inverted_index.greatly | 177 |
| abstract_inverted_index.improve | 176 |
| abstract_inverted_index.layers, | 26 |
| abstract_inverted_index.machine | 42 |
| abstract_inverted_index.masking | 137, 157 |
| abstract_inverted_index.narrows | 124 |
| abstract_inverted_index.perform | 163 |
| abstract_inverted_index.process | 18 |
| abstract_inverted_index.results | 96 |
| abstract_inverted_index.scales, | 119 |
| abstract_inverted_index.scaling | 104 |
| abstract_inverted_index.several | 69 |
| abstract_inverted_index.studies | 54 |
| abstract_inverted_index.utilize | 32 |
| abstract_inverted_index.(EncDec) | 30 |
| abstract_inverted_index.choices, | 134 |
| abstract_inverted_index.dominant | 11 |
| abstract_inverted_index.favoured | 49 |
| abstract_inverted_index.language | 1, 14 |
| abstract_inverted_index.quality, | 150 |
| abstract_inverted_index.separate | 33 |
| abstract_inverted_index.Different | 100 |
| abstract_inverted_index.approach, | 50 |
| abstract_inverted_index.bilingual | 170 |
| abstract_inverted_index.different | 103 |
| abstract_inverted_index.including | 135 |
| abstract_inverted_index.reduction | 184 |
| abstract_inverted_index.sequence, | 144 |
| abstract_inverted_index.sequences | 20 |
| abstract_inverted_index.zero-shot | 83, 179 |
| abstract_inverted_index.bilingual, | 79 |
| abstract_inverted_index.conditions | 91 |
| abstract_inverted_index.directions | 180 |
| abstract_inverted_index.generation | 4 |
| abstract_inverted_index.increases, | 130 |
| abstract_inverted_index.objectives | 140 |
| abstract_inverted_index.off-target | 186 |
| abstract_inverted_index.paradigms: | 13 |
| abstract_inverted_index.parameters | 129 |
| abstract_inverted_index.sequences, | 160 |
| abstract_inverted_index.supervised | 169 |
| abstract_inverted_index.systematic | 87 |
| abstract_inverted_index.thoroughly | 64 |
| abstract_inverted_index.variations | 88 |
| abstract_inverted_index.(massively) | 80 |
| abstract_inverted_index.detrimental | 146 |
| abstract_inverted_index.differences | 108 |
| abstract_inverted_index.performance | 57, 75, 116, 122 |
| abstract_inverted_index.processing. | 40 |
| abstract_inverted_index.properties, | 105 |
| abstract_inverted_index.significant | 112 |
| abstract_inverted_index.translation | 84, 149, 173 |
| abstract_inverted_index.concatenated | 19 |
| abstract_inverted_index.facilitating | 182 |
| abstract_inverted_index.full-visible | 156 |
| abstract_inverted_index.multilingual | 81, 172 |
| abstract_inverted_index.translation, | 43 |
| abstract_inverted_index.architectural | 12, 70, 107 |
| abstract_inverted_index.investigating | 55 |
| abstract_inverted_index.translations. | 187 |
| abstract_inverted_index.understanding | 2 |
| abstract_inverted_index.encoder-decoder | 28 |
| abstract_inverted_index.language-modeling | 139 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |