EXCGEC: A Benchmark for Edit-Wise Explainable Chinese Grammatical Error Correction Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1609/aaai.v39i24.34759
Existing studies explore the explainability of Grammatical Error Correction (GEC) in a limited scenario, where they ignore the interaction between corrections and explanations and have not established a corresponding comprehensive benchmark. To bridge the gap, this paper first introduces the task of EXplainable GEC (EXGEC), which focuses on the integral role of correction and explanation tasks. To facilitate the task, we propose EXCGEC, a tailored benchmark for Chinese EXGEC consisting of 8,216 explanation-augmented samples featuring the design of hybrid edit-wise explanations. We then benchmark several series of LLMs in multi-task learning settings, including post-explaining and pre-explaining. To promote the development of the task, we also build a comprehensive evaluation suite by leveraging existing automatic metrics and conducting human evaluation experiments to demonstrate the human consistency of the automatic metrics for free-text explanations. Our experiments reveal the effectiveness of evaluating free-text explanations using traditional metrics like METEOR and ROUGE, and the inferior performance of multi-task models compared to the pipeline solution, indicating its challenges to establish positive effects in learning both tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1609/aaai.v39i24.34759
- https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409362712
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409362712Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1609/aaai.v39i24.34759Digital Object Identifier
- Title
-
EXCGEC: A Benchmark for Edit-Wise Explainable Chinese Grammatical Error CorrectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-11Full publication date if available
- Authors
-
Jingheng Ye, Shang Qin, Yinghui Li, Xuxin Cheng, Libo Qin, Hai-Tao Zheng, Ying Shen, Peng Xing, Zishan Xu, Guo Cheng, Wenhao JiangList of authors in order
- Landing page
-
https://doi.org/10.1609/aaai.v39i24.34759Publisher landing page
- PDF URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914Direct OA link when available
- Concepts
-
Benchmark (surveying), Computer science, Natural language processing, Artificial intelligence, Geography, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409362712 |
|---|---|
| doi | https://doi.org/10.1609/aaai.v39i24.34759 |
| ids.doi | https://doi.org/10.1609/aaai.v39i24.34759 |
| ids.openalex | https://openalex.org/W4409362712 |
| fwci | 0.0 |
| type | article |
| title | EXCGEC: A Benchmark for Edit-Wise Explainable Chinese Grammatical Error Correction |
| biblio.issue | 24 |
| biblio.volume | 39 |
| biblio.last_page | 25686 |
| biblio.first_page | 25678 |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T13629 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9785000085830688 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text Readability and Simplification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185798385 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8376816511154175 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[0].display_name | Benchmark (surveying) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6416177749633789 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5724520087242126 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5242360234260559 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.0922304093837738 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C58640448 |
| concepts[5].level | 1 |
| concepts[5].score | 0.06212577223777771 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[5].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/benchmark |
| keywords[0].score | 0.8376816511154175 |
| keywords[0].display_name | Benchmark (surveying) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6416177749633789 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.5724520087242126 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5242360234260559 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.0922304093837738 |
| keywords[4].display_name | Geography |
| keywords[5].id | https://openalex.org/keywords/cartography |
| keywords[5].score | 0.06212577223777771 |
| keywords[5].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.1609/aaai.v39i24.34759 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210191458 |
| locations[0].source.issn | 2159-5399, 2374-3468 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2159-5399 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].source.host_organization | https://openalex.org/P4310320058 |
| locations[0].source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320058 |
| locations[0].license | |
| locations[0].pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.1609/aaai.v39i24.34759 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087752092 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jingheng Ye |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jingheng Ye |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5036347892 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shang Qin |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shang Qin |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101752106 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7596-9508 |
| authorships[2].author.display_name | Yinghui Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yinghui Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5018420548 |
| authorships[3].author.orcid | https://orcid.org/0009-0002-6244-2931 |
| authorships[3].author.display_name | Xuxin Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xuxin Cheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5029082837 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3619-675X |
| authorships[4].author.display_name | Libo Qin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Libo Qin |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5022672030 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5128-5649 |
| authorships[5].author.display_name | Hai-Tao Zheng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hai-Tao Zheng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5109087995 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ying Shen |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ying Shen |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5002662876 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-7561-1696 |
| authorships[7].author.display_name | Peng Xing |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Peng Xing |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5102931455 |
| authorships[8].author.orcid | https://orcid.org/0009-0004-5671-216X |
| authorships[8].author.display_name | Zishan Xu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zishan Xu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5101393034 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Guo Cheng |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Guo Cheng |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5024453719 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0795-366X |
| authorships[10].author.display_name | Wenhao Jiang |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Wenhao Jiang |
| authorships[10].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | EXCGEC: A Benchmark for Edit-Wise Explainable Chinese Grammatical Error Correction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2378211422, https://openalex.org/W4321353415, https://openalex.org/W2745001401, https://openalex.org/W2130974462, https://openalex.org/W2028665553, https://openalex.org/W2086519370, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1609/aaai.v39i24.34759 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210191458 |
| best_oa_location.source.issn | 2159-5399, 2374-3468 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2159-5399 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | https://openalex.org/P4310320058 |
| best_oa_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.1609/aaai.v39i24.34759 |
| primary_location.id | doi:10.1609/aaai.v39i24.34759 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210191458 |
| primary_location.source.issn | 2159-5399, 2374-3468 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2159-5399 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.source.host_organization | https://openalex.org/P4310320058 |
| primary_location.source.host_organization_name | Association for the Advancement of Artificial Intelligence |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320058 |
| primary_location.license | |
| primary_location.pdf_url | https://ojs.aaai.org/index.php/AAAI/article/download/34759/36914 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the AAAI Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.1609/aaai.v39i24.34759 |
| publication_date | 2025-04-11 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 27, 63, 106 |
| abstract_inverted_index.To | 31, 56, 96 |
| abstract_inverted_index.We | 81 |
| abstract_inverted_index.by | 110 |
| abstract_inverted_index.in | 10, 88, 167 |
| abstract_inverted_index.of | 5, 41, 51, 70, 77, 86, 100, 125, 137, 152 |
| abstract_inverted_index.on | 47 |
| abstract_inverted_index.to | 120, 156, 163 |
| abstract_inverted_index.we | 60, 103 |
| abstract_inverted_index.GEC | 43 |
| abstract_inverted_index.Our | 132 |
| abstract_inverted_index.and | 21, 23, 53, 94, 115, 146, 148 |
| abstract_inverted_index.for | 66, 129 |
| abstract_inverted_index.its | 161 |
| abstract_inverted_index.not | 25 |
| abstract_inverted_index.the | 3, 17, 33, 39, 48, 58, 75, 98, 101, 122, 126, 135, 149, 157 |
| abstract_inverted_index.LLMs | 87 |
| abstract_inverted_index.also | 104 |
| abstract_inverted_index.both | 169 |
| abstract_inverted_index.gap, | 34 |
| abstract_inverted_index.have | 24 |
| abstract_inverted_index.like | 144 |
| abstract_inverted_index.role | 50 |
| abstract_inverted_index.task | 40 |
| abstract_inverted_index.then | 82 |
| abstract_inverted_index.they | 15 |
| abstract_inverted_index.this | 35 |
| abstract_inverted_index.(GEC) | 9 |
| abstract_inverted_index.8,216 | 71 |
| abstract_inverted_index.EXGEC | 68 |
| abstract_inverted_index.Error | 7 |
| abstract_inverted_index.build | 105 |
| abstract_inverted_index.first | 37 |
| abstract_inverted_index.human | 117, 123 |
| abstract_inverted_index.paper | 36 |
| abstract_inverted_index.suite | 109 |
| abstract_inverted_index.task, | 59, 102 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.where | 14 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.METEOR | 145 |
| abstract_inverted_index.ROUGE, | 147 |
| abstract_inverted_index.bridge | 32 |
| abstract_inverted_index.design | 76 |
| abstract_inverted_index.hybrid | 78 |
| abstract_inverted_index.ignore | 16 |
| abstract_inverted_index.models | 154 |
| abstract_inverted_index.reveal | 134 |
| abstract_inverted_index.series | 85 |
| abstract_inverted_index.tasks. | 55, 170 |
| abstract_inverted_index.Chinese | 67 |
| abstract_inverted_index.EXCGEC, | 62 |
| abstract_inverted_index.between | 19 |
| abstract_inverted_index.effects | 166 |
| abstract_inverted_index.explore | 2 |
| abstract_inverted_index.focuses | 46 |
| abstract_inverted_index.limited | 12 |
| abstract_inverted_index.metrics | 114, 128, 143 |
| abstract_inverted_index.promote | 97 |
| abstract_inverted_index.propose | 61 |
| abstract_inverted_index.samples | 73 |
| abstract_inverted_index.several | 84 |
| abstract_inverted_index.studies | 1 |
| abstract_inverted_index.(EXGEC), | 44 |
| abstract_inverted_index.Existing | 0 |
| abstract_inverted_index.compared | 155 |
| abstract_inverted_index.existing | 112 |
| abstract_inverted_index.inferior | 150 |
| abstract_inverted_index.integral | 49 |
| abstract_inverted_index.learning | 90, 168 |
| abstract_inverted_index.pipeline | 158 |
| abstract_inverted_index.positive | 165 |
| abstract_inverted_index.tailored | 64 |
| abstract_inverted_index.automatic | 113, 127 |
| abstract_inverted_index.benchmark | 65, 83 |
| abstract_inverted_index.edit-wise | 79 |
| abstract_inverted_index.establish | 164 |
| abstract_inverted_index.featuring | 74 |
| abstract_inverted_index.free-text | 130, 139 |
| abstract_inverted_index.including | 92 |
| abstract_inverted_index.scenario, | 13 |
| abstract_inverted_index.settings, | 91 |
| abstract_inverted_index.solution, | 159 |
| abstract_inverted_index.Correction | 8 |
| abstract_inverted_index.benchmark. | 30 |
| abstract_inverted_index.challenges | 162 |
| abstract_inverted_index.conducting | 116 |
| abstract_inverted_index.consisting | 69 |
| abstract_inverted_index.correction | 52 |
| abstract_inverted_index.evaluating | 138 |
| abstract_inverted_index.evaluation | 108, 118 |
| abstract_inverted_index.facilitate | 57 |
| abstract_inverted_index.indicating | 160 |
| abstract_inverted_index.introduces | 38 |
| abstract_inverted_index.leveraging | 111 |
| abstract_inverted_index.multi-task | 89, 153 |
| abstract_inverted_index.EXplainable | 42 |
| abstract_inverted_index.Grammatical | 6 |
| abstract_inverted_index.consistency | 124 |
| abstract_inverted_index.corrections | 20 |
| abstract_inverted_index.demonstrate | 121 |
| abstract_inverted_index.development | 99 |
| abstract_inverted_index.established | 26 |
| abstract_inverted_index.experiments | 119, 133 |
| abstract_inverted_index.explanation | 54 |
| abstract_inverted_index.interaction | 18 |
| abstract_inverted_index.performance | 151 |
| abstract_inverted_index.traditional | 142 |
| abstract_inverted_index.explanations | 22, 140 |
| abstract_inverted_index.comprehensive | 29, 107 |
| abstract_inverted_index.corresponding | 28 |
| abstract_inverted_index.effectiveness | 136 |
| abstract_inverted_index.explanations. | 80, 131 |
| abstract_inverted_index.explainability | 4 |
| abstract_inverted_index.post-explaining | 93 |
| abstract_inverted_index.pre-explaining. | 95 |
| abstract_inverted_index.explanation-augmented | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| citation_normalized_percentile.value | 0.20150754 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |