Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation Agent Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.14302
Recent advancements in Large Language Models (LLMs) have significantly propelled the development of Conversational Recommendation Agents (CRAs). However, these agents often generate short-sighted responses that fail to sustain user guidance and meet expectations. Although preference optimization has proven effective in aligning LLMs with user expectations, it remains costly and performs poorly in multi-turn dialogue. To address this challenge, we introduce a novel multi-turn preference optimization (MTPO) paradigm ECPO, which leverages Expectation Confirmation Theory to explicitly model the evolution of user satisfaction throughout multi-turn dialogues, uncovering the underlying causes of dissatisfaction. These causes can be utilized to support targeted optimization of unsatisfactory responses, thereby achieving turn-level preference optimization. ECPO ingeniously eliminates the significant sampling overhead of existing MTPO methods while ensuring the optimization process drives meaningful improvements. To support ECPO, we introduce an LLM-based user simulator, AILO, to simulate user feedback and perform expectation confirmation during conversational recommendations. Experimental results show that ECPO significantly enhances CRA's interaction capabilities, delivering notable improvements in both efficiency and effectiveness over existing MTPO methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.14302
- https://arxiv.org/pdf/2506.14302
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415311757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415311757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.14302Digital Object Identifier
- Title
-
Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation AgentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-17Full publication date if available
- Authors
-
Xueyang Feng, Jingsen Zhang, Jiakai Tang, Wei Li, Gengyuan Cai, Xu Chen, Quanyu Dai, Yuemin Zhu, Zhenhua DongList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.14302Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.14302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.14302Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415311757 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.14302 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.14302 |
| ids.openalex | https://openalex.org/W4415311757 |
| fwci | |
| type | preprint |
| title | Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation Agent |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10203 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8453999757766724 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Recommender Systems and Techniques |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.8188999891281128 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T10664 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7638999819755554 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Sentiment Analysis and Opinion Mining |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.14302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.14302 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.14302 |
| locations[1].id | doi:10.48550/arxiv.2506.14302 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.14302 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101929118 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4426-5732 |
| authorships[0].author.display_name | Xueyang Feng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Feng, Xueyang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101658564 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2997-3386 |
| authorships[1].author.display_name | Jingsen Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Jingsen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5043446092 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9543-8889 |
| authorships[2].author.display_name | Jiakai Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tang, Jiakai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100663664 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7530-3485 |
| authorships[3].author.display_name | Wei Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Wei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101849887 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2854-4478 |
| authorships[4].author.display_name | Gengyuan Cai |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cai, Guohao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101755392 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0144-1775 |
| authorships[5].author.display_name | Xu Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Chen, Xu |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5048783161 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-7578-2738 |
| authorships[6].author.display_name | Quanyu Dai |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dai, Quanyu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100605235 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-6814-1449 |
| authorships[7].author.display_name | Yuemin Zhu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Zhu, Yue |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5028135192 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-5503-4414 |
| authorships[8].author.display_name | Zhenhua Dong |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Dong, Zhenhua |
| authorships[8].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.14302 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | Expectation Confirmation Preference Optimization for Multi-Turn Conversational Recommendation Agent |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10203 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8453999757766724 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Recommender Systems and Techniques |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.14302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.14302 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.14302 |
| primary_location.id | pmh:oai:arXiv.org:2506.14302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.14302 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.14302 |
| publication_date | 2025-06-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 60 |
| abstract_inverted_index.To | 54, 126 |
| abstract_inverted_index.an | 131 |
| abstract_inverted_index.be | 93 |
| abstract_inverted_index.in | 2, 39, 51, 160 |
| abstract_inverted_index.it | 45 |
| abstract_inverted_index.of | 12, 78, 88, 99, 114 |
| abstract_inverted_index.to | 26, 73, 95, 136 |
| abstract_inverted_index.we | 58, 129 |
| abstract_inverted_index.and | 30, 48, 140, 163 |
| abstract_inverted_index.can | 92 |
| abstract_inverted_index.has | 36 |
| abstract_inverted_index.the | 10, 76, 85, 110, 120 |
| abstract_inverted_index.ECPO | 107, 151 |
| abstract_inverted_index.LLMs | 41 |
| abstract_inverted_index.MTPO | 116, 167 |
| abstract_inverted_index.both | 161 |
| abstract_inverted_index.fail | 25 |
| abstract_inverted_index.have | 7 |
| abstract_inverted_index.meet | 31 |
| abstract_inverted_index.over | 165 |
| abstract_inverted_index.show | 149 |
| abstract_inverted_index.that | 24, 150 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.user | 28, 43, 79, 133, 138 |
| abstract_inverted_index.with | 42 |
| abstract_inverted_index.AILO, | 135 |
| abstract_inverted_index.CRA's | 154 |
| abstract_inverted_index.ECPO, | 67, 128 |
| abstract_inverted_index.Large | 3 |
| abstract_inverted_index.These | 90 |
| abstract_inverted_index.model | 75 |
| abstract_inverted_index.novel | 61 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.these | 18 |
| abstract_inverted_index.which | 68 |
| abstract_inverted_index.while | 118 |
| abstract_inverted_index.(LLMs) | 6 |
| abstract_inverted_index.(MTPO) | 65 |
| abstract_inverted_index.Agents | 15 |
| abstract_inverted_index.Models | 5 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.Theory | 72 |
| abstract_inverted_index.agents | 19 |
| abstract_inverted_index.causes | 87, 91 |
| abstract_inverted_index.costly | 47 |
| abstract_inverted_index.drives | 123 |
| abstract_inverted_index.during | 144 |
| abstract_inverted_index.poorly | 50 |
| abstract_inverted_index.proven | 37 |
| abstract_inverted_index.(CRAs). | 16 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.methods | 117 |
| abstract_inverted_index.notable | 158 |
| abstract_inverted_index.perform | 141 |
| abstract_inverted_index.process | 122 |
| abstract_inverted_index.remains | 46 |
| abstract_inverted_index.results | 148 |
| abstract_inverted_index.support | 96, 127 |
| abstract_inverted_index.sustain | 27 |
| abstract_inverted_index.thereby | 102 |
| abstract_inverted_index.Although | 33 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.Language | 4 |
| abstract_inverted_index.aligning | 40 |
| abstract_inverted_index.enhances | 153 |
| abstract_inverted_index.ensuring | 119 |
| abstract_inverted_index.existing | 115, 166 |
| abstract_inverted_index.feedback | 139 |
| abstract_inverted_index.generate | 21 |
| abstract_inverted_index.guidance | 29 |
| abstract_inverted_index.methods. | 168 |
| abstract_inverted_index.overhead | 113 |
| abstract_inverted_index.paradigm | 66 |
| abstract_inverted_index.performs | 49 |
| abstract_inverted_index.sampling | 112 |
| abstract_inverted_index.simulate | 137 |
| abstract_inverted_index.targeted | 97 |
| abstract_inverted_index.utilized | 94 |
| abstract_inverted_index.LLM-based | 132 |
| abstract_inverted_index.achieving | 103 |
| abstract_inverted_index.dialogue. | 53 |
| abstract_inverted_index.effective | 38 |
| abstract_inverted_index.evolution | 77 |
| abstract_inverted_index.introduce | 59, 130 |
| abstract_inverted_index.leverages | 69 |
| abstract_inverted_index.propelled | 9 |
| abstract_inverted_index.responses | 23 |
| abstract_inverted_index.challenge, | 57 |
| abstract_inverted_index.delivering | 157 |
| abstract_inverted_index.dialogues, | 83 |
| abstract_inverted_index.efficiency | 162 |
| abstract_inverted_index.eliminates | 109 |
| abstract_inverted_index.explicitly | 74 |
| abstract_inverted_index.meaningful | 124 |
| abstract_inverted_index.multi-turn | 52, 62, 82 |
| abstract_inverted_index.preference | 34, 63, 105 |
| abstract_inverted_index.responses, | 101 |
| abstract_inverted_index.simulator, | 134 |
| abstract_inverted_index.throughout | 81 |
| abstract_inverted_index.turn-level | 104 |
| abstract_inverted_index.uncovering | 84 |
| abstract_inverted_index.underlying | 86 |
| abstract_inverted_index.Expectation | 70 |
| abstract_inverted_index.development | 11 |
| abstract_inverted_index.expectation | 142 |
| abstract_inverted_index.ingeniously | 108 |
| abstract_inverted_index.interaction | 155 |
| abstract_inverted_index.significant | 111 |
| abstract_inverted_index.Confirmation | 71 |
| abstract_inverted_index.Experimental | 147 |
| abstract_inverted_index.advancements | 1 |
| abstract_inverted_index.confirmation | 143 |
| abstract_inverted_index.improvements | 159 |
| abstract_inverted_index.optimization | 35, 64, 98, 121 |
| abstract_inverted_index.satisfaction | 80 |
| abstract_inverted_index.capabilities, | 156 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.expectations, | 44 |
| abstract_inverted_index.expectations. | 32 |
| abstract_inverted_index.improvements. | 125 |
| abstract_inverted_index.optimization. | 106 |
| abstract_inverted_index.short-sighted | 22 |
| abstract_inverted_index.significantly | 8, 152 |
| abstract_inverted_index.Conversational | 13 |
| abstract_inverted_index.Recommendation | 14 |
| abstract_inverted_index.conversational | 145 |
| abstract_inverted_index.unsatisfactory | 100 |
| abstract_inverted_index.dissatisfaction. | 89 |
| abstract_inverted_index.recommendations. | 146 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |